
Appeal No. 2017-1118

IN THE UNITED STATES COURT OF APPEALS
FOR THE FEDERAL CIRCUIT

ORACLE AMERICA, INC.,

Plaintiff-Appellant,

v.

GOOGLE INC.,

Defendant-Cross Appellant.

Appeal from the United States District Court for the Northern District of
California in Case No. 10-CV-3561, Judge William H. Alsup

BRIEF OF AMICI CURIAE EUGENE H. SPAFFORD, PH.D., ZHI DING,
PH.D., ADAM PORTER, PH.D., AND KEN CASTLEMAN, PH.D., IN

SUPPORT OF APPELLANT

February 17, 2017

Jared Bobrow
Principal Attorney
Aaron Y. Huang
Amanda K. Branch
WEIL, GOTSHAL & MANGES LLP
201 Redwood Shores Parkway
Redwood Shores, CA 94065
(650) 802-3000

Counsel for Amici Curiae

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 1 Filed: 02/17/2017

i

TABLE OF CONTENTS

PAGE

I. STATEMENT OF INTEREST .. 1

II. SUMMARY OF THE ARGUMENT ... 6

III. ARGUMENT .. 8

A. Technology Background ... 8

1. APIs and Software APIs ... 8

2. Java APIs ... 10

B. Technical Considerations Relevant To The Fair Use Factors 11

1. The Declaring Code and SSO of an API Embody
Substantial Creativity in the Design of the API. 11

2. The SSO and Declaring Code Are Significant Portions of
the Creative Work of an API. ... 16

3. The Creativity of an API Is Not Substantively Changed
by Substituting New Implementing Code for the API’s
Existing Implementing Code. ... 18

4. The Creative Expression of an API Is Not Substantively
Changed When it is Used on a Different Form Factor. 19

5. There Is No Technical Need to Copy the Declaring Code
and SSO of an API. ... 21

C. Additional Considerations Relevant to Software Innovation and
Development. .. 24

IV. CONCLUSION ... 26

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 2 Filed: 02/17/2017

ii

TABLE OF AUTHORITIES

PAGE(S)

CASES

Oracle Am., Inc. v. Google Inc.,
750 F.3d 1339 (Fed. Cir. 2014) .. 26

STATUTES AND REGULATIONS

17 U.S.C. § 107 .. 12

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 3 Filed: 02/17/2017

iii

CERTIFICATE OF INTEREST

Counsel for amici curiae, Eugene H. Spafford, Ph.D., Zhi Ding, Ph.D., Adam

Porter, Ph.D., and Ken Castleman, Ph.D., certifies the following:

1. The full name of every party represented by me is:

EUGENE H. SPAFFORD
ZHI DING
ADAM PORTER
KEN CASTLEMAN

2. The names of the real parties in interest (if the party named in the caption is not

the real party in interest) represented by me is:

N/A

3. All parent corporations and any publicly held companies that own 10% or more

of the stock of the party represented by me are:

N/A

4. The names of all law firms and the partners or associates that appeared for the

parties now represented by me in the trial court or agency or are expected to appear

in this Court are:

Jared Bobrow
Aaron Y. Huang
Amanda K. Branch
WEIL, GOTSHAL & MANGES LLP

Dated: February 17, 2017 /s/ Jared Bobrow
 Jared Bobrow

WEIL GOTSHAL & MANGES LLP

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 4 Filed: 02/17/2017

1

I.

STATEMENT OF INTEREST

Dr. Eugene H. Spafford is a Professor of Computer Science at Purdue

University, where he has been employed since 1987, and the founder and

Executive Director of the Center for Education and Research in Information

Assurance and Security at Purdue. He has over 30 years of experience in both

practice and research in the field of computing and computer science, including

with the use of application programming interfaces (“APIs”). Over the past

decade, he has served in an advisory or consulting capacity on issues in computing

and information systems with several U.S. government agencies and their

contractors, including the National Science Foundation, the Federal Bureau of

Investigation, the Government Accountability Office, the National Security

Agency, the U.S. Department of Justice, the U.S. Air Force, the U.S. Naval

Academy, U.S. SPACECOM, the Department of Energy, and the Executive Office

of the President. He has served on the President’s Information Technology

Advisory Committee and has testified before Congressional committees nine

times. He is a Fellow of five major scientific and professional organizations

involved with computing, the Association for Computing Machinery, American

Academy for the Advancement of Science (AAAS), Institute of Electrical and

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 5 Filed: 02/17/2017

2

Electronic Engineers (“IEEE”), International Information Systems Security

Certifications Consortium, and Information Systems Security Association.

Dr. Spafford has published and spoken extensively about software

engineering, information security, and professional ethics, and he has served on the

editorial boards of several major journals of computer science. He was affiliated

with the Software Engineering Research Center, an NSF University-Industry

Cooperative Research Center located at Purdue. His current research is directed

towards the architecture, construction, and public policy of secure information

systems. He has been writing computer programs since 1972, including computer

security programs that have been used internationally by government agencies and

companies, and his programming experience includes Java and other programming

languages. He also has taught undergraduate and graduate courses involving

software engineering, information system security, and many programming

languages.

Dr. Zhi Ding is a Professor of Electrical and Computer Engineering at the

University of California, Davis. He has over 26 years of practical and research

experience in the field of electronic and electrical engineering, including with the

use of APIs. He received his Ph.D. degree in Electrical Engineering from Cornell

University in 1990. He was a faculty member of Auburn University and the

University of Iowa, and he has held visiting positions at Australian National

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 6 Filed: 02/17/2017

3

University, Hong Kong University of Science and Technology, NASA Research

Center (Cleveland, Ohio), and USAF Wright Laboratory.

Dr. Ding has published extensively about electrical engineering, and his

research focuses on communications and systems. Dr. Ding is a coauthor of the

popular engineering textbook Modern Digital and Analog Communication Systems

(4th ed.). Dr. Ding is a Fellow of the IEEE, and he has served on the technical

committees of several workshops and conferences. He was the Technical Program

Chair of the 2006 IEEE Global Telecommunication Conference. Dr. Ding’s

research includes active collaborations with researchers from several countries,

including Australia, China, Japan, Canada, Taiwan, Korea, Singapore, and Hong

Kong.

Dr. Adam Porter is a Professor of Software Engineering at the University of

Maryland and the University of Maryland Institute for Advanced Computing

Studies. Dr. Porter was appointed as the Executive Director of the Fraunhofer

Center for Experimental Software Engineering in July 2015. The Fraunhofer

Center is a UMD-affiliated applied research center focusing on software that

increasingly underlies most innovation. Dr. Porter earned his Ph.D. from the

University of California at Irvine.

Dr. Porter is a Senior Member of the IEEE and a Senior Member of ACM,

and served on the editorial boards of the IEEE Transactions on Software

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 7 Filed: 02/17/2017

4

Engineering and the ACM Transactions on Software Engineering and

Methodology. Dr. Porter has published extensively about software engineering,

including the paper, Empirically Guided Software Development Using Metric-

Based Classification, which was listed as one of the 20 most widely-cited articles

published by IEEE Software. Dr. Porter has also taught a number of courses in

software engineering, including in large scale software development. Dr. Porter

also co-created a Massive Open Online course on Android development that has

reached over 900,000 students.

Dr. Kenneth R. Castleman is the author of the highly regarded textbook,

Digital Image Processing and co-editor of Microscope Image Processing.

Dr. Castleman received his Ph.D. in Electrical Engineering from the University of

Texas at Austin in 1970, and has over 45 years of experience in the field.

Dr. Castleman is a former Adjunct Professor at the University of Texas at Austin,

as well as former Senior Scientist at NASA Jet Propulsion Laboratory.

Dr. Castleman also served as president of Advanced Digital Imaging Research,

LLC, a leader in digital image processing research and development. Under his

leadership, ADIR, and its predecessor, Perceptive Scientific Instruments, Inc.,

developed and deployed many innovations in image processing software under

government funding.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 8 Filed: 02/17/2017

5

Dr. Castleman has authored or co-authored more than 60 papers on digital

image processing. Further, Dr. Castleman holds a number of image processing and

image analysis patents. Dr. Castleman has served on many university and

government advisory committees. For example, Dr. Castleman was a member of

the Scientific Working Group on Imaging Technology for the Federal Bureau of

Investigation, and also assisted NASA in the investigations of the Space Shuttle

Challenger and Columbia disasters. He is also a Fellow of the American Institute

of Medical and Biological Engineering and a member of the Space Technology

Hall of Fame. Dr. Castleman has also offered his expertise in more than thirty

intellectual property litigations since 1982.

Drs. Spafford, Ding, Porter, and Castleman’s interest in this appeal is to

improve the intellectual property laws of the United States. A robust and balanced

intellectual property regime promotes innovation, reliability, and security in

software and information systems. They have no interest in any party to this

litigation or stake in the outcome of this appeal.

Drs. Spafford, Ding, Porter, and Castleman submit this amici curiae brief

with the consent of all parties, who have stipulated their consent for all amici to

file their briefs.

No party’s counsel authored this brief in whole or in part. No party or

party’s counsel contributed money that was intended to fund preparing or

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 9 Filed: 02/17/2017

6

submitting this brief. No person, other than the amici or their counsel, contributed

money that was intended to fund preparing or submitting this brief.

II.

SUMMARY OF THE ARGUMENT

At stake in this appeal is whether Google’s copying of Oracle’s software

code—specifically, certain packages of application programming interfaces

(“APIs”) for the Java programming platform—was fair use. We believe that there

are important technical considerations that should be brought to bear on this

determination.

As professors, researchers, and practitioners in computer science, we have

created, used, and taught others about software APIs—including in the software

that we have written, the research that we have overseen, the companies and

government agencies that we have advised, and the courses that we have taught.

Software APIs are widely used throughout modern, complex information systems.

The public policy and legal treatment of APIs, as well as what constitutes fair use

of those APIs, is therefore of great academic and practical interest to us and others

in the computer science, computer engineering, systems engineering, electrical

engineering, and software engineering communities.

We do not address the district court’s legal reasoning, but we do observe that

its holding appears predicated on certain assumptions regarding the creativity

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 10 Filed: 02/17/2017

7

involved in an API, the effect of the platform on which an API is implemented on

the purpose and expression of an API, and the need to copy an API from a

technical perspective. Those assumptions, however, are misguided from our

perspective as professors, researchers, and practitioners in the field of computer

science.

This Court previously determined that the declaring code of the Java APIs

has sufficient expression to be protectable by copyright. The creativity involved in

Java APIs is similarly relevant to the second factor of the fair use determination,

“the nature of the copyrighted work.” The design and expression of an API

reflects the creative choices and decision-making of its author. APIs can be

expressed in many different ways yet still accomplish the same purpose and

objective. Differences among APIs are therefore often due to creativity based on

experience and experimentation, rather than dictates of functionality. The specific

Java API packages at issue in this case provide a good example of the creative

expression involved in designing an API: authoring the design of a Java API

package requires significant creativity and involves many subjective choices not

dictated by function—more than are required for authoring the code that

implements that design.

Regardless of the medium on which the Java platform APIs are

implemented, the expression and purpose of the APIs are the same. An API is not

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 11 Filed: 02/17/2017

8

“transformed” merely because it was first implemented for use on desktop

computers and later reimplemented on mobile devices. The meaning and message

of the API are, from a technical perspective, identical, as the hardware form factors

are simply computers.

Nor was it necessary for Google to copy the Java APIs. Google’s copying of

the Java APIs was not dictated by technical necessity, as Google did not achieve

interoperability between Android and Java.

Because of the central role that well-designed APIs play in modern

information systems, it is important that the law recognize and protect the

creativity they embody.

III.

ARGUMENT

A. Technology Background

1. APIs and Software APIs

To assist the Court in understanding the technology of the present case, we

provide the following discussion of APIs generally and of software APIs.

Generally speaking, an “application programming interface” is a designed

expression that can be used to assist with software development. APIs come in a

variety of types and forms, but all are used to describe and enable interactions in

various types of applications. APIs can vary greatly in size, complexity, and form.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 12 Filed: 02/17/2017

9

A “software API” is a type of API used in computing. A software API

prescribes the expected behavior or set of rules that the software embodies, as well

as the format and nature of data communicated with that software in any

interaction. For example, a software API may describe what routines, data, and

variables are available in the software; it may also describe the inputs, outputs,

exceptions, and types of data used by the routines. A software API may also

express all sorts of interrelationships with other APIs.

An API can consist of two different types of source code: a design that sets

forth the structure and behavior of the API, and an implementation that

accomplishes the function prescribed by that design. A single software API may

have one or more implementations, in the form of one or more software libraries

that each implement the same function called for by the design of the API. An API

may also have no implementation, in the case of an abstract API used in design or

documentation.

By analogy, an API is similar to a blueprint. The blueprint may express the

design of a structure, and may specify the building materials, clearances and

dimensions, placement of utilities, and methods of ingress and egress. The

blueprint will incorporate features designed to meet the requirements of building

codes, the strengths of the materials, and the capacities of other items not explicitly

listed on the blueprint, such as wiring chases that may be used for a security

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 13 Filed: 02/17/2017

10

system. There are countless designs that are possible because architects may make

many subjective choices to address varying goals. The blueprint is therefore the

creative expression of a unique design that is the product of the architect’s many

choices.

2. Java APIs

A software API can be for an application programming platform, in this case

“Java.” Java allows a user to organize functions and data into a hierarchy of nested

and interrelated structures called “objects.”1 A Java API expresses the design of

the objects, their relationships to each other, and prescribes the methods by which a

program written in the Java language may interact with and control those objects.

To accomplish this, a Java API expresses a set of “classes.” A Java API organizes

the classes into “packages,” and the packages are organized into “libraries.”

A Java API’s definition for each class prescribes a set of controls and data,

such as “variables” and “methods,” associated with that class. A Java API may in

turn define each method to have different inputs, known as “parameters”; outputs,

known as “return values”; and values returned and/or actions taken in cases of

error, known as “exceptions.” These definitions of the parameters, return values,

and exceptions in a Java API may be referred to as the “declaring code” for a

1 There are several general forms of computer languages, and not all of them use
the “objects,” “classes,” and “methods” described here as abstract representations
for structure and definition. Those that do use these abstractions are known as
“object-oriented” languages. Java is one such object-oriented language.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 14 Filed: 02/17/2017

11

method. A program written in the Java language may call for the execution of a

method defined by a Java API. The code which is interpreted and executed in

order to execute the method may be referred to as the “implementing code.” The

implementing code is thus the executable code which, when executed, performs the

function prescribed by a Java API, including interpreting the parameters and

generating the return values and exceptions defined by the declaring code.

B. Technical Considerations Relevant To The Fair Use Factors

We understand that the considerations for a fair use inquiry are set forth in

17 U.S.C. § 107. We believe a number of technical considerations are relevant to

the Court’s application of these fair use factors to Google’s copying of Oracle’s

Java API packages.

1. The Declaring Code and SSO of an API Embody
Substantial Creativity in the Design of the API.

We understand that one of the factors in the fair use inquiry is “the nature of

the copyrighted work,” and that this involves an analysis of the creativity of the

underlying copied work. In this case, we understand that it is undisputed that

Google copied the “structure, sequence, and organization” (SSO) and declaring

code of 37 Java API packages. The copied portions disclose what packages,

classes, methods, and variables are contained in the Java libraries, their

organization and relationships, how to use them, and their expected behavior.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 15 Filed: 02/17/2017

12

There is substantial creativity involved in developing the declaring code and

SSO of an API. This creativity is demonstrated by the fact that there are countless

different ways that they can be expressed. For any given problem or use case, the

declaring code and SSO can be structured and expressed in any number of ways,

and that variety reflects the creative choices and subjective judgments of its author

rather than the author’s response to functional requirements.

There are iterative design choices at each level of an API, and the ultimate

result is an expression of those choices. For example, a developer has to decide

which methods, classes, packages, and other elements to include. In addition, the

API designer must decide how these elements should be used, how they are

supposed to behave, and how they relate to each other. Classes and packages can

be rearranged, interfaces can be implemented in one API but not in another, and

the SSO can take many shapes. Decisions must also be made regarding the

declaring code. For example, decisions about the declaring code include how to

name the methods, the selection and ordering of inputs and outputs, and what kinds

of errors can be reported. Each step in the design process leaves room for the

imagination and independent judgment of the author.

A simplified example is instructive. A Java API could be created to draw

graphics on a screen, but it could be designed in many different ways. Figure 1

below shows one possibility, in which a “Polygon” class contains three separate

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 16 Filed: 02/17/2017

13

methods for drawing each of three separate shapes: “drawCircle,” which takes as

inputs the coordinates of the center of the circle and the length of the radius;

“drawEllipse,” which takes the coordinates of the center, the length of the major

axis, and the length of the minor axis; and “drawSquare,” which takes the

coordinates of the center of the square and the length of a side.

However, these functions are not pre-determined, as the designer may

instead choose to design the “Polygon” class differently. As shown in Figure 2

below, instead of a separate “drawCircle” method, the API may only include the

“drawEllipse” function. This approach may be more difficult to use and

implement, because the user must be sure to input equal values for the major and

minor axes rather than simply the radius to draw a circle. However, it has the

added advantage of greater flexibility and power, in that it allows a user to draw

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 17 Filed: 02/17/2017

14

more complex shapes than a circle using the same method and to more simply

modify and test code that uses the method.

As a third alternative, instead of separate methods for drawing specific

shapes, the author of the API may instead define within the “Polygon” class only a

single method “drawPolygon” that takes as its inputs the coordinates of the center

of the shape and a complex variable called “ShapeType.” The “ShapeType” input

in turn is defined in an entirely new class, and represents a complex data object

that includes variables for the number of sides (e.g., “0” for a circle or “4” for a

square) and, for any given shape, the relevant size measurements (e.g., the radius

in the case of a circle or the length of the sides in the case of a square). While this

method may be even more difficult to use and implement than those so far

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 18 Filed: 02/17/2017

15

discussed, it is correspondingly more flexible and powerful because it can draw

more complex shapes (e.g., a pentagon).

Of course, these are only a few of the possibilities for a single method.

There are many more ways that an author may design and structure the API to

perform the same function. Moreover, the author must make similar decisions for

each and every method and class in an API. For a complex API that may involve

hundreds or thousands of methods and classes, these expressive choices are

multiplied hundreds or thousands of times over, resulting in an almost countless

number of ways an API design can be expressed. The many possible approaches

to the simple circle-drawing example illustrates the myriad creative choices that an

author must make, including balancing factors such as ease of use, flexibility, and

difficulty of implementation.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 19 Filed: 02/17/2017

16

That the result of this creative process is a functional product does not

undermine the creativity involved in its design. The expression of an API is not

dictated by function, but instead, is a direct reflection of the author’s creativity.

Accordingly, a court considering this factor of the fair use analysis should find that

API packages, like those used in Java, are creative in nature.

2. The SSO and Declaring Code Are Significant Portions of
the Creative Work of an API.

We understand that another factor in the fair use determination is the amount

and substantiality of the portion used in relation to the copyrighted work as a

whole, which includes a qualitative determination.

As discussed above, the SSO and declaring code of an API embodies a

significant portion of the creativity involved in authoring an API. In some

instances, the SSO and declaring code of an API can comprise most of the creative

work of the API. As noted above, the selection and ordering of the packages,

classes, and methods may have nearly uncountable options, as may the naming and

selection of the declaring code. The implementing code, in contrast, may be

relatively straight-forward or even limited by the confines of the creative decisions

made in designing the SSO and declaring code. For such APIs, the creativity

embodied in the SSO and declaring code exceeds that for the implementing code,

and the SSO and declaring code comprise most of the creative work involved in

the authorship of the API.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 20 Filed: 02/17/2017

17

An example demonstrating how the SSO and declaring code can embody a

relatively greater portion of the creative work of an API than the implementing

code is instructive. Proceeding from the simplified example given above of an API

containing a polygon-drawing class, the author of the class may choose to include

one or more methods within that class to enable the drawing of one such polygon,

a circle, in a number of ways. Two of the possible examples are shown above:

The author could choose to include only a single method, “drawEllipse,” with

declaring code that relies on the user to supply major and minor axes of equal

values. Alternatively, the author may include a separate, additional method,

“drawCircle,” with declaring code that specifies a single radius value as an input.

The decision of whether to include one or both methods, as presented in authoring

the SSO and declaring code, may involve creative choices, such as balancing ease-

of-use against flexibility and power. Similar choices must be made for each of the

methods that the author decides to include in the class, resulting in countless ways

the design of the declaring code and SSO may be expressed.

By comparison, once those expressive design choices embodied in the

declaring code and SSO have been made, the implementation of the chosen

method(s) potentially may involve comparatively less creativity. The API author

may find, for example, that writing the implementing code for drawing a circle is

relatively straight-forward, and that there are only a finite number of ways to write

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 21 Filed: 02/17/2017

18

the implementing code, given the limitations of the system and the inputs and

outputs specified by the declaring code.

The SSO and declaring code also are significant portions of the expression

of a software API because these are the portions that application developers see

and use in writing programs. To learn how to write programs using the software

API, for example, a developer could consult the specification of the API. The API

specification identifies the libraries, packages, classes, and methods that are

available for use by the developer, their declaring code, and their respective

intended functions and relationships. The principal expression of the software API

that is “exposed” to developers is the SSO and declaring code of the API.

Developers need not ever view or even be aware of the implementing code in order

to successfully learn and use the API. The declaring code and SSO instead connect

the developers to the internal implementing code.

3. The Creativity of an API Is Not Substantively Changed by
Substituting New Implementing Code for the API’s Existing
Implementing Code.

We understand that another fair use factor is “the purpose and character of

the use,” which has been interpreted by courts to include a determination of

whether the use is transformative, that is, whether the use changes the expressive

content, meaning, or message of the underlying work. We also understand that it is

undisputed in this case that, in most instances, Google used different implementing

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 22 Filed: 02/17/2017

19

code for the 37 Java API packages from which it copied the declaring code and

SSO. But the implementing code for the copied packages in Android performed

substantially the same function as the implementing code for the packages in Java.

For example, the Android implementing code accepts the same parameters and

generates the same return values and exceptions as the Java implementing code.

Indeed, we understand from the District Court that the implementing code

written by Google replicated the exact same functionality as in Java. The SSO of

the packages, classes, and methods, and their relationships to each other, remained

the same and were not changed by Google’s replacement of the implementing

code. The declaring code similarly provided the same method specifications. The

declaring code and SSO of the Java API packages that were copied in Android thus

retained the same purpose, function, and meaning as they had in Java. The

replacement of the implementing code in Android did not substantively change or

add to the purpose or creative expression in the design embodied in the copied

SSO and declaring code.

4. The Creative Expression of an API Is Not Substantively
Changed When it is Used on a Different Form Factor.

We also understand that the determination of whether a work is

transformative examines whether the work uses the copyrighted material for a

different or distinct purpose. In this case, we understand that the District Court

narrowly interpreted the facts of this case under the assumption that Android was

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 23 Filed: 02/17/2017

20

developed for use on mobile devices, such as smartphones and tablets, and Java

originally was developed for use on traditional computing devices, such as desktop

and laptop computers. But even if the copied declaring code and SSO were

implemented on a different form factor, that would not change the purpose,

message, or meaning of the copied declaring code and SSO.

Traditional form factors, such as desktop and laptop computers, and mobile

form factors which have achieved popularity more recently, such as smartphones

and tablets, are all platforms for computing and running applications. From the

standpoint of a software API, the form factors are all equivalent, because each is

fundamentally a computer that can interpret and execute programs, regardless of

how the computer is externally packaged. Indeed, the same processors and other

hardware components may be used across the different form factors. For example,

recent versions of the most popular operating system for full-sized PCs, Microsoft

Windows, have been designed to work on tablets.2 And some recent tablets and

smartphones contain processors that also are found in full-sized PCs.3 Recent

trends like these demonstrate that mobile smartphones and tablets have

2 See, e,g., Michael Muchmore, “How to use Windows 10 Continuum,” PC
Magazine, Apr. 21, 2015, http://www.pcmag.com/article2/0,2817,2482299,00.asp.
3 See, e.g., Microsoft Surface Pro Specifications, https://www.microsoft.com/
surface/en-us/support/surface-pro-specs (tablet containing Intel x64 architecture
processor, which has been used in desktops and laptops).

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 24 Filed: 02/17/2017

21

increasingly converged with traditional laptop and desktop personal computers

from a hardware capability perspective.

The purpose of, and creative expression for, the software API for an

application programming platform is the same in all form factors: to describe the

syntax, functions, variables, and data structures that a programmer can learn and

use. And the role of the API in writing those programs is not altered by whether

the program is executed on a computer that is small and mobile or large and

relatively less mobile.

The adaptation of a software API for an application programming platform

for use in another form factor does not change the purpose of the API. As such,

Google did not transform the purpose or character of the portion of the Java API

that it copied when it implemented it on smartphones and tablets, rather than on

desktop and laptop computers.

5. There Is No Technical Need to Copy the Declaring Code
and SSO of an API.

Based on our understanding, there was no need, from a technical or

technological perspective, to copy the declaring code and SSO for a subset of an

API, as Google did in this case.

If the purpose of copying an API is to enable the use of a programming

language, then naturally the copied portion of the API would be expected to

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 25 Filed: 02/17/2017

22

include only that which is necessary to use the programming language. That does

not appear to be the case here.

In the District Court proceedings, we understand that the parties stipulated

that 170 lines of more than 11,000 lines of code that Google copied were necessary

to use the Java programming language. The remaining copied code was not

necessary to use the Java programming language. Those additional lines of code

are provided for the convenience of application developers. Developers can use

these pre-written lines of code as building blocks to create their own applications,

without having to re-create those building blocks every time they write a new

application. The vast majority of the code copied by Google thus appears to have

been taken from this collection of pre-written packages, which are not necessary to

use the Java programming language.

We understand that in the trial on remand, Google in fact conceded that

Android is not interoperable with Java. In the context of software and computer

systems, “interoperability” refers to the ability of software designed for execution

on one system to be executed on another. We understand that in this case it is

undisputed that a program written for the Java platform cannot be compiled and

executed on the Android platform. And conversely, a program written for the

Android platform cannot be executed on the Java platform. Google’s copying did

not enable interoperability between the Android and Java platforms, and the fact

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 26 Filed: 02/17/2017

23

that Google copied only certain Java packages and not others, as would be required

for full interoperability, suggests to us as practitioners that its copying was not

related to any technical needs or desire for interoperability.4

We understand that in the District Court proceedings on remand, Google has

stated that it copied select portions of the Java APIs, not necessarily to achieve

interoperability, but rather to encourage engineers, who were already familiar with

Java and its APIs, to develop in Android. The District Court has called this

copying that is necessary to prevent “cross-system babel.” Order Denying Rule 50

Motions at 10 (Dkt. 1988). In other words, in lieu of claiming that the copying was

necessary for cross-system operation (i.e., interoperability), which Google

acknowledged that its copying did not enable, the District Court instead stated that

Google’s copying was necessary for cross-system consistency (i.e., to aid Java

developers in learning to develop on Android more quickly).

Google’s desire to make Android more attractive to Java developers is not

borne of any technical necessity. It is common for application developers to learn

multiple programming languages and to create programs for competing platforms.

Developers can readily adapt to and learn new languages, particularly when the

4 If Google wanted to achieve full interoperability, it could have taken a license
and used all of the Java API. As set forth in the Federal Circuit’s prior opinion in
this case, Oracle offered three different types of licenses to Java. Based on the
license selected, Google could have used Java. We understand that Google did not
do so—it copied only select portions, and did so without a license.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 27 Filed: 02/17/2017

24

language is conceptually similar to one that the developer already knows.5 There is

no cross-system consistency or cross-system “babel” problem as the District Court

suggested. In this case, even though Google copied the declaring code and SSO of

37 Java packages, developers still had to learn the remainder of Android, which

was not copied from Java, including the syntax, functions, variables, and data

structures in Android that differ from those in Java. Java and Android remain

different. Google’s copying thus did not appear sufficient, let alone necessary, as a

technical matter, to alleviate the sort of cross-system “babel” that the District Court

noted.

C. Additional Considerations Relevant to Software Innovation and
Development.

We understand that one of the factors in the determination of fair use is the

effect of the use upon the potential market for the work. Accordingly, an

additional consideration is that Oracle had provided means by which Google could

have “fairly” used Oracle’s Java code that would have preserved the market that

Oracle had intended and created for Java as an “open source” project.

As noted above and discussed in the prior Federal Circuit opinion in this

case, Oracle offered three different types of licenses to Java. Oracle Am., Inc. v.

Google Inc., 750 F.3d 1339, 1350 (Fed. Cir. 2014). Because Oracle had an

5 For example, the Java programming language is one of several well-known
object-oriented languages, such as “C++.”

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 28 Filed: 02/17/2017

25

existing licensing scheme, there was an available avenue for Google to use the

Java code fairly. Instead, Google copied Java APIs without transforming the work,

enabling interoperability, or contributing back to the Java community, which

Oracle’s licenses sought to establish, encourage, and protect. This severely

undermined Oracle’s rights to control the market for Java and its derivative works.

Finally, because APIs are expressive works, permitting verbatim copying of

APIs without legitimate justification will stymie innovation and development.

Having robust, secure APIs is important. As in many fields, additional

development and innovation of APIs requires programmers to bring their creativity

and decision-making to bear. If these works are not protected, and can be verbatim

copied without consequence and without compensating their original author,

innovation will suffer, as programmers will be disincentivized from exercising

their creativity. Similarly, permitting copying of APIs harms the rights of

developers to control and create new versions of APIs, programming languages,

and/or platforms, as they are unable to control how and when to develop new

products and enter new markets.

While computer programming is highly disciplined in its structure, it

nonetheless affords wide latitude in both implementation details and overall

functionality. Similar to a composer, for example, the resulting work of a

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 29 Filed: 02/17/2017

26

programmer reflects the vision and creativity of its maker. Indeed, it is common

for a programmer to be identified simply by reading his or her source code.

Two primary factors that motivate a programmer to create useful source

code are the enjoyment that comes from creating something that serves a purpose,

and the promise of financial compensation, which sometimes can be quite

significant. To remove the incentive of financial compensation would greatly

reduce the motivation of those creative individuals who conceive and implement in

solutions to important problems in software. Like most countries, the United

States recognizes the incentive that copyright protection gives creative people and

the benefit to the general public that ensues. This approach has given rise to a host

of creative works that otherwise might never have seen the light of day.

IV.

CONCLUSION

We respectfully submit the foregoing technical considerations for the

Court’s attention in reviewing the fair use determination in this appeal.

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 30 Filed: 02/17/2017

27

Dated: February 17, 2017

Respecfully submitted,

 /s/ Jared Bobrow
 Jared Bobrow

Principal Attorney
WEIL GOTSHAL & MANGES LLP
201 Redwood Shores Parkway
Redwood Shores, CA 94065
Telephone: (650) 802-3000

Counsel for Amici Curiae

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 31 Filed: 02/17/2017

28

CERTIFICATE OF COMPLIANCE

The undersigned certifies that this brief complies with the type-volume

limitations of Fed. R. App. P. 32(a)(7)(B). This brief contains 5,643 words as

calculated by the “Word Count” feature of Microsoft Word 2010, the word

processing program used to create it.

The undersigned further certifies that this brief complies with the typeface

requirements of Fed. R. App. P. 32(a)(5) and the type style requirements of Fed. R.

App. P. 32(a)(6). This brief has been prepared in a proportionally spaced typeface

using Microsoft Word 2010 in Times New Roman 14 point font.

Dated: February 17, 2017 /s/ Jared Bobrow
 Jared Bobrow

Principal Attorney
WEIL GOTSHAL & MANGES LLP
201 Redwood Shores Parkway
Redwood Shores, CA 94065
Telephone: (650) 802-3000

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 32 Filed: 02/17/2017

CERTIFICATE OF SERVICE

I hereby certify that on February 17, 2017, I filed or caused to be filed copies

of the foregoing with the Clerk of the United States Court of Appeals for the

Federal Circuit via the CM/ECF system and served or caused to be served a copy

on all counsel of record by the CM/ECF system.

Dated: February 17, 2017 /s/ Jared Bobrow
 Jared Bobrow

Principal Attorney
WEIL GOTSHAL & MANGES LLP
201 Redwood Shores Parkway
Redwood Shores, CA 94065
Telephone: (650) 802-3000

Case: 17-1118 CASE PARTICIPANTS ONLY Document: 59 Page: 33 Filed: 02/17/2017

