
CLI-2084525

IN THE UNITED STATES PATENT TRIAL AND APPEAL BOARD

In the Inter Partes Review of U.S. Patent No. 7,110,936

Trial No.: Not Yet Assigned

Issued: September 19, 2006

Filed: November 19, 2001

Inventors: Fen Hiew, et al.

Assignee: Complementsoft LLC

Title: SYSTEM AND METHOD FOR GENERATING AND MAINTAINING
 SOFTWARE CODE

MAIL STOP PATENT BOARD
Patent Trial and Appeal Board
United States Patent & Trademark Office
P.O. Box 1450
Alexandria, Virginia 22313-1450

PETITION FOR INTER PARTES REVIEW UNDER 37 C.F.R. § 42.100

On behalf of SAS Institute, Inc. (“SAS” or “Petitioner”) and in accordance with

35 U.S.C. § 311 and 37 C.F.R. § 42.100, inter partes review is respectfully requested

for claims 1-16 of U.S. Patent No. 7,110,936 (“the ‘936 patent”), attached hereto as

Exhibit 1001.

The undersigned representative of Petitioner authorizes the Patent Office to

charge the $27,200 Petition Fee, along with any additional fees, to Deposit Account

501432, ref: 343355-610009. Sixteen claims are being reviewed; accordingly no

excess claim fees are required.

PETITION FOR INTER PARTES REVIEW OF U.S. PATENT NO. 7,110,936

CLI-2084525 -i-

Table of Contents

I. Introduction ... 1

II. Grounds for Standing Pursuant to 37 C.F.R. § 42.104(a) 5

III. The ‘936 Patent ... 5

A. Summary of the ‘936 Patent ... 5

B. The ‘936 Patent Prosecution History ... 7

IV. Identification of Challenge Pursuant to 37 C.F.R. § 42.104(b) 10

A. 37 C.F.R. § 42.104(b)(1): Claims For Which Inter Partes Review
Is Requested ... 10

B. 37 C.F.R. § 42.104(b)(2): The Prior Art and Specific Grounds On
Which The Challenge to the Claims Is Based ... 10

C. 37 C.F.R. § 42.104(b)(3): Claim Construction ... 12

D. 37 C.F.R. § 42.104(b)(4): How the Construed Claims are
Unpatentable .. 14

E. 37 C.F.R. § 42.104(b)(5): Supporting Evidence 14

V. There Is a Reasonable Likelihood That at Least One Claim of the ‘936
Patent Is Unpatentable .. 15

A. Overview of the Prior Art ... 15

B. Claim 1 Is Anticipated by Coad (U.S. Patent No. 6,851,107) 25

C. Claim 1 Is Obvious Over Coad in View of Oracle Primer and
Oracle8 Primer ... 31

D. Claims 1-3 and 5 Are Anticipated by Antis (U.S. Patent No.
5,572,650) .. 32

E. Claims 1-3, 5, 6, 8, 10-12, 15, and 16 Are Obvious Over Antis in
View of Coad ... 41

F. Claim 4 Is Obvious Over Antis in View of Coad and
Burkwald (U.S. Patent No. 6,356,285) .. 52

G. Claim 7 Is Obvious Over Antis in view of Coad and Eick (U.S.
Patent No. 5,937,064) ... 53

H. Claim 9 Is Obvious Over Antis in view of Coad and “Building
Applications” ... 54

PETITION FOR INTER PARTES REVIEW OF U.S. PATENT NO. 7,110,936

Page

 -ii-
CLI-2084525

I. Claim 13 Is Obvious Over Antis in view of Coad and
Corda (U.S.Patent No. 5,758,122) ... 56

J. Claim 14 Is Obvious Over Antis in view of Coad and Access 97
Visual Basic ... 57

K. Dependent Claims 2-16 Are Unpatentable Over Each Reference
and Combination of References Asserted for Claim 1 in View of
the Prior Art ... 57

VI. Mandatory Notices Pursuant to 37 C.F.R. § 42.8(a)(1) 58

A. C.F.R. § 42.8(b)(a): Real Party-In-Interest ... 58

B. C.F.R. § 42.8(b)(2): Related Matters .. 58

C. C.F.R. § 42.8(b)(3) and (4): Lead and Back-up Counsel and
Service Information ... 58

VII. Conclusion .. 59

CLI-2084525

I. Introduction

The ‘936 patent is currently being wielded by the patent owner, Complementsoft

LLC (“Complementsoft”), in an attempt to cover long-known systems and methods for

developing software. (ComplementSoft, LLC v. SAS Institute Inc., Docket No. 1:12-cv-

07372 (N.D. Ill. Sept 14, 2012).) The ‘936 patent is directed to an integrated

development environment for generating and maintaining source code and discloses

four elements that work in concert – a document manager, an editor, a parser layer, and

a visualizer. (See, e.g., ‘936 patent, claim 1.) The subject matter claimed in the ‘936

patent includes standard elements that were well known in the prior art before the filing

date of the ‘936 patent, and this was acknowledged by the Office.1 Complementsoft

itself has conceded that numerous claim elements of the ‘936 patent were disclosed in

1 In a Supplemental Notice of Allowability for the ‘936 patent, the Office stated:

“Applicants are disclosing a software development environment where a

user can simultaneously view a graphical representation and a text

representation of source code including views that are synchronized such

that modifications to one view are automatically reflected in the other

view, including the ability to detect the particular language of the source

code by applying rules. This has been disclosed in the prior art of

record.” (Ex. 1004, Supplemental Notice of Allowability dated August

1, 2006, at 3-4.)

 -2-

CLI-2084525

the prior art, as evidenced in documents filed in the related litigation. (See Ex. 1016,

Complementsoft’s LPR 2.5 Initial Response to SAS Institute’s Invalidity Contentions.)

In fact, during prosecution of the ‘936 patent, the Office found that all four

elements of claim 1 – the document manager, editor, parser layer, and visualizer – were

disclosed in a single reference and in the same arrangement as claimed in the ‘936

patent. (Ex. 1002, Office Action dated May 31, 2005, at 3, noting “[The Coad

reference] clearly anticipates the claimed limitations of independent claims 1 and 18.”)

Despite this finding, however, Complementsoft was able to gain allowance

based on a single aspect that allegedly distinguished the prior art from the pending

claims. During prosecution, Complementsoft attempted to distinguish the prior art,

which was applicable to object-oriented languages, from the amended claims, that were

modified to recite data manipulation languages.2 Complementsoft argued that the

object-oriented languages used in the prior art were “structured” programming

languages, while the data manipulation languages of the amended claims were

“unstructured” programming languages, and that the claims were thus distinguishable

from the prior art on this basis.

Complementsoft’s argument, however, is technically misleading because a

person of ordinary skill in the art would understand that most data manipulation

2 As filed, the claims were directed to any form of “source code.”

 -3-

CLI-2084525

languages are in fact structured programming languages, and the claims should not

have been allowed on this basis. (See Ex. 1015, ¶¶ 24-60.) Further, the scope of claim

1, covering both program flows and data flows, is inconsistent with the argument set

forth by Complementsoft. This is because the distinction argued by Complementsoft

(i.e., that displaying flow in unstructured programming languages is distinguishable

from displaying flow in structured programming languages) applies, if at all, to

displaying program flows only. (Id. at ¶¶ 61-68.)

Moreover, as described below, the claimed software development environment

was not new when the ‘936 patent was filed. As noted in the background of the ‘936

patent, GUI-based software editor packages are very old, and the problems inherent

with such software were common knowledge in the field: “There are also a few GUI

based editor software packages to make editing code easier. . . . What is lacking,

however, is [an] . . . editor integrated with [a] diagramming package so the user does

not have to manually generate and update program flow or data flow diagrams.” (‘936

patent at col. 1, lines 52-63.) The ‘936 patent purports to address these problems by

dynamically linking an editor and a visualizer, such that edits made to source code

using the editor are automatically reflected in graphical representations of flows

displayed by the visualizer, and vice versa. (See, e.g., id. at claim 1.) But the linking of

an editor and a visualizer was a common component of software development

environments at the time that the ‘936 patent was filed.

 -4-

CLI-2084525

Accordingly, the lack of inventiveness is evidenced herein by the refutation of

the argument presented during prosecution with respect to Coad. The lack of

inventiveness is further shown, inter alia, by the submission of U.S. Patent No.

5,572,650 (Ex. 1005, “Antis”), which issued more than five years prior to the filing of

the ‘936 patent in November 2001. Antis discloses all of the limitations of the

independent claim of the ‘936 patent, including the visualization of flows within source

code programmed using a data manipulation language. Specifically, Antis discloses a

“method and apparatus for visually displaying structural characteristics of a large

database.” (Antis at Abstract.) Antis discloses the display of graphical representations

of flows in source code, and, in particular, flows in data manipulation language source

code. In fact, the types of flows disclosed in the Antis patent are nearly identical to

those described and claimed in the ‘936 patent. (See, e.g., Fig. 17 of the ‘936 patent,

disclosing flow by using arrows to display the data that is accessed by retrieved pieces

of source code, and Antis at col. 7, line 31 to col. 8, line 4, disclosing a “code view” that

provides a visual representation of the database relations that are accessed by a selected

piece of source code.)

The dependent claims of the ‘936 patent add nothing more than well known

software editing concepts that are explicitly disclosed in the Coad reference applied

during prosecution or in one or more additional prior art references that are analogous

 -5-

CLI-2084525

art to Antis and that one of ordinary skill in the art would be motivated to combine with

Antis in generating an integrated software development environment.

Petitioner submits that had the references presented herein been properly

considered by the Patent Office during prosecution, claims 1-16 of the ‘936 patent

would not have issued, and therefore this petition for inter partes review should be

granted.

II. Grounds for Standing Pursuant to 37 C.F.R. § 42.104(a)

SAS certifies that the ‘936 patent is available for inter partes review and that

SAS is not barred or estopped from requesting inter partes review challenging the

patent claims on the grounds identified herein.

III. The ‘936 Patent

A. Summary of the ‘936 Patent

 The ‘936 patent was filed on November 19, 2001, and issued on September 19,

2006. The ‘936 patent claims priority to U.S. Provisional Application Nos. 60/270,950

and 60/293,854, filed on February 23, 2001, and May 25, 2001, respectively.

 The ‘936 patent is directed to an integrated software development environment

for generating and editing computer code. (‘936 patent at Abstract.) The integrated

software development environment includes four modules: (1) a document manager,

(2) an editor, (3) a parser layer, and (4) a visualizer. (See id. at col. 5, lines 4-25.) The

document manager is a file management program used to retrieve source code for

 -6-

CLI-2084525

editing. (Id. at col. 6, lines 22-42.) The retrieved source code is edited using the editor

module, which “allows the user to perform standard text editing functions, including,

mouse placement of the cursor, click-and-drag text selection and standard Windows

key combinations for cutting, copying and pasting data.” (Id. at col. 7, lines 4-7.)

 The parser layer and the visualizer are used to display graphical representations

of flows within the retrieved source code. The parser layer is “language aware,” such

that the integrated software development environment of the ‘936 patent is able to

develop and edit code of multiple different programming languages. (Id. at col. 17,

lines 17-32; see also id. at col. 9, lines 49-53, disclosing use with SAS, SQL, SPSS,

DB2 UDB, Oracle, and PL/SQL languages.) Using the rules and logic that correspond

to the detected programming language, the file parser breaks the retrieved source code

into individual words or tokens. (Id. at col. 17, lines 46-49.) The file parser also tags

each token to associate it with a particular class. (Id. at col. 17, lines 48-54.)

 Tagging of the tokens enables the visualizer module to recognize and display the

flow of the retrieved source code. (Id. at col. 17, lines 54-56.) Fig. 17, for example, is

an exemplary screenshot from the visualizer module depicting a flow of retrieved

source code. In Fig. 17, the visualizer module displays at 120 icons 126 with arrows

that illustrate data flow in the retrieved source code. The flow thus provides an

indication of what data (e.g., relations smpl.smpl_1, smpl.smpl_2) are accessed by

which modules of source code (e.g., source code used to perform a sort operation).

 -7-

CLI-2084525

 The visualizer module is dynamically linked with the editor module, such that

edits made to the source code using the editor are automatically reflected in the

graphical representations of flows displayed by the visualizer, and edits made to the

graphical representations of flows in the visualizer are automatically reflected in the

source code displayed by the editor. (See, e.g., id. at claim 1 and col. 16, lines 31-46.)

B. The ‘936 Patent Prosecution History

 The ‘936 patent was allowed after responses to two non-final Office Actions

were filed. The first non-final Office Action rejected the original claims based upon the

Coad reference (Ex. 1006, U.S. Patent No. 6,851,107). The Office found that all four

elements of independent claim 1 were disclosed in the Coad reference and in the same

arrangement as claimed in the ‘936 patent. (Ex. 1002, Office Action dated May 31,

2005, at 2-3, noting that “Coad clearly anticipates the claimed limitations of

independent claims 1 and 18.”) In an attempt to distinguish the pending claims from

Coad, Complementsoft amended independent claim 1 as follows:

1. (Currently Amended) An integrated development environment,

comprising:

 a document manager for retrieving source code programmed using

one of a plurality of types of data manipulation languages;

 an editor for displaying the retrieved source code and providing a

means for a user to edit the retrieved source code;

 a parser layer which detects the one of the plurality of types of data

manipulation languages in which the software language of the retrieved

 -8-

CLI-2084525

source code is programmed and which activates rules and logic applicable

to the detected one of the plurality of types of data manipulation

languages software language; and

 a visualizer dynamically linked to the editor for displaying

graphical representations of flows within the retrieved source code using

the rules and logic applicable to the detected one of the plurality of types

of data manipulation languages and activated by the parser, wherein the

editor, parser layer and visualizer cooperate such that edits made to the

source code using the editor are automatically reflected in the graphical

representations of flows displayed by the visualizer and edits made to the

graphical representations of flows in the visualizer are automatically

reflected in the source code displayed by the editor.

In its remarks, Complementsoft did not dispute that all four elements of the independent

claim (i.e., the document manager, editor, parser, and visualizer) were disclosed in

Coad. Instead, Complementsoft argued:

 Considering now Coad, Coad discloses a software development

tool for use with object-oriented programming languages, such as Java or

C++. More particularly, Coad discloses a system in which the object-

oriented language of the source code is identified by the extension of a

retrieved file to thereby identify a template which is to be used to convert

the source code into a transient meta model (TMM), i.e., a language-

neutral representation of the source code. The system then uses the TMM

to display a graphical representation of a project.

 From the foregoing it will be appreciated that Coad fails to

expressly or inherently disclose the claimed system and method. More

 -9-

CLI-2084525

particularly, rather than disclose the claimed system and method for

examining software written using one of the plural data manipulation

languages, i.e., a language which suffers the problem of being

unstructured (see Background section of subject application), the system

and method described in Coad is limited to software written using an

object oriented language, i.e., a structured programming language

such as Java or C++. . . . [T]he system and method of Coad leverages the

structured nature of the programming language to merely “convert” the

source code into a language-neutral representation and then use the

language-neutral representation to display a graphical representation of

the project. (Ex. 1003, Response to Office Action dated August 4, 2005,

at 9-10, emphasis added.)

Complementsoft thus argued that the object-oriented languages of Coad were

“structured” programming languages, while the data manipulation languages of the

claims were “unstructured” programming languages, and that the claims were

distinguishable from Coad on this basis.

Claim 1 ultimately issued in the form shown above. A supplemental notice of

allowability provided the following with respect to claim 1 overcoming Coad:

Coad further discloses the ability to detect the particular language of the

source code and applying rules. However, Coad does not explicitly

disclose the specific arrangement of elements including a document

manager, editor, parser layer, or visulizer [sic] as noted above, or that the

detected language is a data manipulation language. (Ex. 1004,

Supplemental Notice of Allowability at 5, emphasis in original.)

 -10-

CLI-2084525

IV. Identification of Challenge Pursuant to 37 C.F.R. § 42.104(b)

A. 37 C.F.R. § 42.104(b)(1): Claims For Which Inter Partes Review
 Is Requested

Inter partes review is requested for claims 1-16 of the ‘936 patent.

B. 37 C.F.R. § 42.104(b)(2): The Prior Art and Specific Grounds On
 Which The Challenge to the Claims Is Based

Inter partes review is requested in view of the following prior art references:

 U.S. Patent No. 5,572,650 to Antis et al. (“Antis”) (Exhibit 1005). Antis was

filed on June 30, 1994, and issued on November 5, 1996. Antis is therefore

prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 U.S. Patent No. 6,851,107 to Coad et al. (“Coad”) (Exhibit 1006). Coad was

filed on October 4, 2000, and issued on February 1, 2005. Coad is therefore

prior art to the ‘936 patent under 35 U.S.C. § 102(e).

 U.S. Patent No. 6,356,285 to Burkwald et al. (“Burkwald”) (Exhibit 1007).

Burkwald was filed on December 17, 1997, and issued on March 12, 2002.

Burkwald is therefore prior art to the ‘936 patent under 35 U.S.C. § 102(e).

 U.S. Patent No. 5,937,064 to Eick et al. (“Eick”) (Exhibit 1008). Eick was

filed on March 3, 1997, and issued on August 10, 1999. Eick is therefore

prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 “Microsoft Access 97 Visual Basic Step by Step” (hereinafter “Access 97

Visual Basic”) (Exhibit 1009). Access 97 Visual Basic was published in

 -11-

CLI-2084525

1997. Access 97 Visual Basic is therefore prior art to the ‘936 patent under

35 U.S.C. § 102(b).

 U.S. Patent No. 5,758,122 to Corda et al. (“Corda”) (Exhibit 1010). Corda

was filed on March 15, 1995, and issued on May 26, 1998. Corda is

therefore prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 “Building Applications with Microsoft Access 97” (hereinafter “Building

Applications”) (Exhibit 1011). “Building Applications” was published in

1996. “Building Applications” is therefore prior art to the ‘936 patent under

35 U.S.C. § 102(b).

 “Oracle Programming – A Primer” (hereinafter “Oracle Primer”) (Exhibit

1012). Oracle Primer was published in 1999. Oracle Primer is therefore

prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 “Oracle8 Programming: A Primer” (hereinafter “Oracle8 Primer”) (Exhibit

1013). Oracle8 Primer was published in 1999. (See Ex. 1017.) Oracle8

Primer is therefore prior art to the ‘936 patent under 35 U.S.C. § 102(b).

The specific statutory grounds on which the challenge to the claims is based and

the patents relied upon for each ground are as follows:

a) Claim 1 is anticipated by Coad under 35 U.S.C. § 102(e).

b) Claim 1 is unpatentable under 35 U.S.C. § 103(a) over Coad in view of

Oracle Primer and Oracle8 Primer.

 -12-

CLI-2084525

c) Claims 1-3 and 5 are anticipated by Antis under 35 U.S.C. § 102(b).

d) Claims 1-3, 5, 6, 8, 10-12, 15, and 16 are unpatentable under 35 U.S.C.

§ 103(a) over Antis in view of Coad.

e) Claim 4 is unpatentable under 35 U.S.C. § 103(a) over Antis in view of Coad

and Burkwald.

f) Claim 7 is unpatentable under 35 U.S.C. § 103(a) over Antis in view of Coad

and Eick.

g) Claim 9 is unpatentable under 35 U.S.C. § 103(a) over Antis in view of Coad

and “Building Applications.”

h) Claim 13 is unpatentable under 35 U.S.C. § 103(a) over Antis in view of

Coad and Corda.

i) Claim 14 is unpatentable under 35 U.S.C. § 103(a) over Antis in view of Coad

and Access 97 Visual Basic.

j) To the extent not explicitly enumerated above, claims 2-16 are unpatentable

over each reference and combination of references asserted for claim 1 in view of the

prior art.

C. 37 C.F.R. § 42.104(b)(3): Claim Construction

Pursuant to 37 C.F.R. § 42.100(b), and solely for the purposes of this review,

Petitioner construes the claim language such that the claims are given their broadest

reasonable interpretation in light of the specification of the ‘936 patent. For terms not

 -13-

CLI-2084525

specifically listed and construed below, Petitioner interprets them for purposes of this

review in accordance with their plain and ordinary meaning under the required broadest

reasonable interpretation.

 “automatically” — Claim 1. For purposes of this review, Petitioner adopts the

construction “without user intervention” for the term “automatically.” This is

consistent with the ‘936 patent’s specification as well as applicable case law. In the

specification, for example, the ‘936 patent states: “Preferably, the visualizer and editor

are integrated so that changes made to the code in the editor are immediately reflected in

the visualizer and vice-versa.” (‘936 patent at 2:42-45; emphasis added). The term

“automatic” has been construed previously in other litigations involving software

technology. See, for example: Collegenet, Inc. v. Applyyourself, Inc., 418 F.3d 1225

(Fed. Cir. 2005) (affirming the District Court’s interpretation that the claim term

“automatically” means “once initiated, the function is performed by a machine, without

the need for manually performing the function.”); Eolas Technologies, Inc. v. Adobe

Systems, Inc., 810 F. Supp.2d 795 (E.D. Texas 2011) (finding that the claim term

“automatically invoking the executable applications” meant that the executable

application is launched without user activation.); and Rockwell Electronic Commerce

Corporation v. Apropos Technology, Inc., 2002 U.S. Dist. LEXIS 272 (N.D. Illinois

2002) (finding that the claim term “automatically” in several phrases means “initiated

and performed without human intervention.”)

 -14-

CLI-2084525

 “data manipulation language” — Claim 1. For purposes of this review,

Petitioner adopts the construction “a programming language used to access data in a

database, such as to retrieve, insert, delete, or modify data in the database” for the term

“data manipulation language.” (See Ex. 1015, ¶¶ 48-54.) This is consistent with the

‘936 patent’s specification. In the specification, for example, the ‘936 patent cites SQL

and Oracle as data manipulation languages for accessing data in a database. (See, e.g.,

‘936 patent at col. 1, lines 20-25.) Based on such disclosures, the adopted claim

construction for “data manipulation language” is consistent with the disclosure in the

‘936 patent with respect to data manipulation languages.

Because the standard for claim construction at the Patent Office is different than

that used during a U.S. District Court litigation, see In re Am. Acad. Of Sci. Tech Ctr.,

367 F.3d 1359, 1364, 1369 (Fed. Cir. 2004); MPEP § 2111, Petitioner expressly

reserves the right to argue a different claim construction in litigation for any term of the

‘936 patent as appropriate in that proceeding.

D. 37 C.F.R. § 42.104(b)(4): How the Construed Claims are
 Unpatentable

A detailed explanation of how claims 1-16 are unpatentable is set forth below at

Section V.

E. 37 C.F.R. § 42.104(b)(5): Supporting Evidence

An Appendix of Exhibits supporting this Petition is attached. Included at Exhibit

1015 is a Declaration of Dr. Nick Roussopoulos under 37 C.F.R. § 1.68. References

 -15-

CLI-2084525

discussed in the Declaration of Dr. Nick Roussopoulos are attached as Exhibits 1021 –

1040.

V. There Is a Reasonable Likelihood That at Least One Claim of the ‘936
Patent Is Unpatentable

 Section V.A contains a description of each piece of relevant prior art and an

explanation of the motivation to combine the relevant prior art (where applicable), and

Section V.B contains claim charts identifying where each element of the challenged

claims are found in the prior art.

A. Overview of the Prior Art

1. Coad

 “Coad” (Ex. 1006), U.S. Patent No. 6,851,107, was filed on October 4, 2000,

and issued on February 1, 2005. Coad is therefore prior art to the ‘936 patent under 35

U.S.C. § 102(e). Coad was applied against the claims of the ‘936 patent during

prosecution. (See Ex. 1002, Office Action dated May 31, 2005.) During prosecution,

the Office found that Coad disclosed numerous limitations of the claims, including “a

visualizer dynamically linked to the editor for displaying graphical representations of

flows within the retrieved source code.” (See id. at 3.)

 Coad is directed to a “software development tool which allows a developer to

simultaneously view a graphical and a textual display of source code.” (Coad at

Abstract.) The graphical and textual views are synchronized, such that modifications

made in one view are automatically reflected in the other view. (Id. at col. 4, line 64 to

 -16-

CLI-2084525

col. 5, line 2.) To display the graphical view of the source code, the software

development tool of Coad “determines the language of the source code of the chosen

file, converts the source code from the language into a language-neutral representation,

uses the language-neutral representation to textually display the source code of the

chosen file in the language, and uses the language-neutral representation to display a

graphical representation of at least a portion of the project.” (Id. at col. 15, lines 21-28.)

The graphical view of the source code includes graphical representations of flows

within the source code. (Id. at col. 16, line 57 to col. 17, line 47.)

 The software development tool of Coad further discloses a Quality Assurance

(QA) module used to check source code for various types of errors (i.e., coding errors,

critical errors, and declaration style errors, among others). (Id. at col. 9, line 66 to col.

10, line 5.) If errors are detected in the source code, an error message and debugging tip

for correcting the code are provided to the developer. (Id. at col. 14, line 64 to col. 15,

line 15.)

2. Antis

 “Antis” (Ex. 1005), U.S. Patent No. 5,572,650, was filed on June 30, 1994, and

issued on November 5, 1996. Antis is therefore prior art to the ‘936 patent under 35

U.S.C. § 102(b).

 Antis is directed to a relational database analysis system that provides graphical

displays for visualizing structures and relationships within relational databases. (Antis

 -17-

CLI-2084525

at col. 1, lines 15-18.) To provide the visualizations, the relational database analysis

system includes a number of linked “views.” For example, a highest level view of a

relational database is presented in an “over view,” as illustrated in Fig. 2 of Antis. The

over view displays high-level statistics and characteristics of the relational database

including a listing of all relations of the database. (Id. at col. 4, lines 1-19.)

 Further information on the relational database is provided in additional views

that are interactively linked to the over view and to each other. (Id. at col. 2, lines 36-

39; see also id. at Figs. 2-12, depicting linked views including specification view,

associations view, code view, and domain view, among others.) For example, in Fig. 8,

Antis discloses a “code view” including a plurality of code boxes, where each code box

represents a unit of source code of a relational database management system (RDBMS).

The code view is linked to the over view, such that associations between relations of the

database and the source code that accesses the relations can be visually represented.

For example, if a relation is selected in the over view, the application source code that

“use[s] the currently selected relation [is] displayed in the code view.” (Id. at col. 7,

lines 36-38.) Similarly, “[c]licking the mouse button on a code box [in the code view]

highlights in the over view all relations that use the corresponding unit of code.” (Id. at

col. 7, lines 52-54.) The associations between the relations of the database and the

source code that accesses the relations are determined via a parser layer that is based on

the YACC computer program. (Id. at col. 9, lines 29-41.) The parser layer detects one

 -18-

CLI-2084525

of a plurality of different types of programming languages used in source code and

applies appropriate rules and logic based on the detected language. (Id.)

 The linking of the various views “makes them interactive with each other, such

that changes to one view causes corresponding changes in the other actively linked

views.” (Id. at col. 9, lines 23-25.) For example, Antis discloses that a piece of source

code can be retrieved via Cscope, “a well known code browser.” (Id. at col. 9, line 46.)

Any edits to the retrieved source code “will have coordinated interactive results in the

other open views.” (See id. at col. 8, line 63 to col. 9, line 1, and Fig. 12.)

3. Motivation to Combine Antis with Coad

 A person of ordinary skill in the art (POSITA) would have been motivated to

combine Antis’s teachings with Coad because both Antis and Coad are directed to

software development tools that provide visual representations of source code. The

similar purposes and overlapping teachings that would have motivated the POSITA to

combine the teachings of Antis and Coad are further reflected in the interlinked,

synchronized “views” disclosed in both references. The POSITA in software

development systems would have been motivated to supplement Antis’s database

analysis system with Coad’s teaching of a Quality Assurance (QA), because this would

allow for easier source code debugging and a more accurate code view display in Antis

by enabling automatic detection of source code errors. (See Ex. 1015, ¶¶ 164-167.)

 -19-

CLI-2084525

4. Burkwald

 “Burkwald” (Ex. 1007), U.S. Patent No. 6,356,285, was filed on December 17,

1997, and issued on March 12, 2002. Burkwald is therefore prior art to the ‘936 patent

under 35 U.S.C. § 102(e). Burkwald was applied against the claims of the ‘936 patent

during prosecution. (See Ex. 1002, Office Action dated May 31, 2005, at 5-6.) The

Office found that Burkwald disclosed limitations of the claims including “graphical

representations of data flows [that] are expandable and collapsible.” (See id.)

 Burkwald is directed to a “software visualization technique [that] allows a

software application or portfolio to be visually analyzed.” (Burkwald at Abstract.) The

software visualization technique of Burkwald allows a user to expand or collapse a

displayed graphical representation of source code flow. (Id. at col. 14, line 43 to col.

15, line 15, and Figs. 6-8.)

5. Motivation to Combine Burkwald with Antis and Coad

 A POSITA would have been motivated to combine Burkwald’s teachings with

Antis and Coad because all three references are directed to software development tools

that provide visual representations of source code, such that the similar purposes and

overlapping teachings would have motivated the POSITA to combine the teachings of

the references. The POSITA would have been motivated to supplement the

development tools of Antis and Coad with Burkwald’s teaching of expanding and

collapsing graphical representations of source code flows, because this would provide a

 -20-

CLI-2084525

developer with flexibility to modify the views of Antis and Coad to display information

at a higher or lower level of detail. (See Ex. 1015, ¶ 218.)

6. Access 97 Visual Basic

 Access 97 Visual Basic (Ex. 1009) was published in 1997. Access 97 Visual

Basic is therefore prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 Access 97 Visual Basic is an instructional book that includes tutorials for using

Microsoft Access 97 Visual Basic software, which is a database management system.

A portion of the book entitled “Finding and Fixing Bugs in Your Code” discloses that

the Microsoft Access 97 Visual Basic software highlights and displays source code in

red text when the system determines there is an error. (Access 97 Visual Basic at 140.)

7. Motivation to Combine Access 97 Visual Basic with Antis
 and Coad

 A POSITA would have been motivated to combine the teachings of Access 97

Visual Basic with Antis and Coad because all three references are directed to software

development tools that provide visual representations of source code, such that the

similar purposes and overlapping teachings would have motivated the POSITA to

combine the teachings of the references. As another example, the POSITA in software

development systems would have been motivated to supplement the development tools

of Antis and Coad with the teachings of Access 97 Visual Basic regarding changing the

appearance of source code determined to have errors, because this would simplify

source code debugging in Antis and Coad. (See Ex. 1015, ¶ 242.)

 -21-

CLI-2084525

8. Eick

 “Eick” (Ex. 1008), U.S. Patent No. 5,937,064, was filed on March 3, 1997, and

issued on August 10, 1999. Eick is therefore prior art to the ‘936 patent under 35

U.S.C. § 102(b).

 Eick is directed to a system for “visual analysis of a database.” (Eick at col. 1,

lines 6-7.) The disclosed system allows a variety of remote clients to access

information from a database for the purpose of allowing the clients to perform

interactive visualization of the database. (Id. at col. 2, lines 9-15.) Eick discloses that a

security layer can be used to manage the connections between the clients and the

database, where the security layer utilizes, for example, password protection or data

encryption techniques. (Id. at col. 4, lines 19-27.)

9. Motivation to Combine Eick with Antis and Coad

 A POSITA would have been motivated to combine Eick’s teachings with Antis

and Coad because all three references are directed to visual representations of source

code and data structures, such that the similar purposes and overlapping teachings

would have motivated the POSITA to combine the teachings of the references. As

another example, the POSITA in software development systems would have been

motivated to supplement the development tools of Antis and Coad with Eick’s teaching

of a security layer for managing secure connections with remote computers, because

this would allow the systems of Antis and Coad to be distributed to one or more remote

 -22-

CLI-2084525

locations without a substantially increased risk that remotely stored data could be

compromised. (See Ex. 1015, ¶ 224.)

10. Corda

 “Corda” (Ex. 1010), U.S. Patent No. 5,758,122, was filed on March 16, 1995,

and issued on May 26, 1998. Corda is therefore prior art to the ‘936 patent under 35

U.S.C. § 102(b).

 Corda is directed to an “immersive visual programming environment” that

“permits the flow of data objects and the interaction among the data objects to be

visually displayed to the user.” (Corda at Abstract.) The disclosed programming

environment is configured to change an appearance of a displayed data flow if an error

is detected in source code: “Semantic error detection is enhanced through observation

of the flow of data and the motion of the structure itself. . . . Run-time error messages in

the form of sight and sound alerts are provided, with the offending component

highlighted in some way.” (Id. at col. 4, lines 41-48.)

11. Motivation to Combine Corda with Antis and Coad

 A POSITA would have been motivated to combine Corda’s teachings with Antis

and Coad because all three references are directed to providing visual representations of

source code, such that the similar purposes and overlapping teachings would have

motivated the POSITA to combine the teachings of the references. As another

example, the POSITA in software development systems would have been motivated to

 -23-

CLI-2084525

supplement the development tools of Antis and Coad with the teachings of Corda

regarding changing the appearance of displayed flows to indicate source code

determined to have errors, because this would simplify source code debugging in Antis

and Coad. (See Ex. 1015, ¶ 236.)

12. “Building Applications”

 “Building Applications” (Ex. 1011) was published in 1996. “Building

Applications” is therefore prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 “Building Applications” is an instructional book that includes tutorials for using

Microsoft Access 97 software, which is a database management system. A portion of

the book entitled “Writing and Editing Code” discloses that the Microsoft Access 97

software includes an “automatic syntax checking” feature configured to automatically

correct segments of source code determined to have errors: “Visual Basic checks the

syntax of that line and displays a message if it finds an error. To enable automatic

syntax checking, select the Auto Syntax Check check box on the Module tab of the

Options dialog box (Tools menu).” (“Building Applications” at 54.)

13. Motivation to Combine “Building Applications” with Antis
 and Coad

 A POSITA would have been motivated to combine the teachings of “Building

Applications” with Antis and Coad because all three references are directed to software

development tools that provide visual representations of source code, such that the

similar purposes and overlapping teachings would have motivated the POSITA to

 -24-

CLI-2084525

combine the teachings of the references. The POSITA in software development

systems would have been motivated to supplement the development tools of Antis and

Coad with the teachings of “Building Applications” regarding automatically correcting

segments of source code determined to have errors, because this would simplify the

debugging of source code in Antis and Coad. (See Ex. 1015, ¶ 230.)

14. Oracle Primer

 Oracle Primer (Ex. 1012) was published in 1999. Oracle Primer is therefore

prior art to the ‘936 patent under 35 U.S.C. § 102(b).

 Oracle Primer is an instructional book that includes information on the Oracle

database system. Oracle Primer also includes information on the JDBC (Java Database

Connectivity) application programming interface (API), which enables database access

in the Java programming language. (Ex. 1012 at 187-189 and 194.)

15. Oracle8 Primer

 Oracle8 Primer (Ex. 1013) was published in 1999. (See Ex. 1017, Declaration of

Morris M. Jackson.) Oracle8 Primer is therefore prior art to the ‘936 patent under 35

U.S.C. § 102(b).

 Oracle8 Primer is an instructional book that includes information on the Oracle

database system. Oracle8 Primer discloses that SQL can be embedded in the Java, C,

and C++ programming languages, thus allowing each of these programming languages

 -25-

CLI-2084525

to access data in a database. (Ex. 1013, Oracle8 Primer at 93, 95, 103, 108, 118, 277,

280, 281, 294, and 301.)

16. Motivation to Combine Oracle Primer and Oracle8 Primer
 with Coad

 A POSITA would have been motivated to combine Coad’s teachings with

Oracle Primer and Oracle8 Primer because all three references are directed to computer

programming, generally, and to the Java and C++ programming languages, specifically,

such that the similar purposes and overlapping teachings would have motivated the

POSITA to combine the teachings of the references. Further, the POSITA would have

been motivated to supplement Coad with the disclosure in the Oracle Primer and the

Oracle8 Primer regarding using the Java and C++ programming languages to access

data in a database, because this would enhance the utility of these programming

languages by allowing them to retrieve, insert, delete, or modify data of a database.

(See Ex. 1015, ¶ 115.)

B. Claim 1 Is Anticipated by Coad (U.S. Patent No. 6,851,107)

 Claim 1 is anticipated by Coad as indicated below.

1. An integrated development environment, comprising:

Coad discloses this claim element. (See Ex. 1015, ¶¶ 82-84.) To the extent the

preamble is considered a limitation to the claim, Coad discloses an integrated

software development environment at Abstract:

“Methods and systems consistent with the present invention provide an improved
software development tool which allows a developer to simultaneously view a

 -26-

CLI-2084525

graphical and a textual display of source code. The graphical and textual views are
synchronized so that a modification in one view is automatically reflected in the other
view.”

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Coad. (Ex. 1016 at 18.)

[1.1] a document manager for retrieving source code programmed using one of a
plurality of types of data manipulation languages;

Coad discloses this claim element. (See Ex. 1015, ¶¶ 85-87.) At col. 15, lines 60-64,

Coad discloses a document manager for retrieving source code from a selected

file:

“As previously stated, the project comprises a plurality of files. The developer either
uses the software development tool to open a file which contains existing source code,
or to create a file in which the source code will be developed.”

At Abstract, Coad further discloses that the retrieved source code may be

programmed using one of a plurality of types of programming languages:

“In addition, the software development tool is designed for use with more than one
programming language.”

As stated above in Section IV.C, a data manipulation language is “a programming

language used to access data in a database, such as to retrieve, insert, delete, or

modify data in the database.” Coad discloses use of the software development tool

with the C++ and Java programming languages. (See, e.g., Coad at col. 16, lines 1-

4.) Because both of these programming languages had functions that allowed

them to access data in a database (see Ex. 1015, ¶¶ 48-54), the C++ and Java

 -27-

CLI-2084525

programming languages of Coad disclose the recited “data manipulation

languages” of claim 1.

[1.2] an editor for displaying the retrieved source code and providing a means for a
user to edit the retrieved source code;

Coad discloses this claim element. (See Ex. 1015, ¶¶ 88-89.) At col. 4, lines 54-60,

Coad discloses an incremental code editor (ICE) for displaying and editing

retrieved source code:

“Although modifications made on the displays 204 and 206 may appear to modify the
displays 204 and 206, in actuality all modifications are made directly to the source code
202 via an incremental code editor (ICE) 208, and the TMM 200 is used to generate the
modifications in both the graphical 204 and the textual 206 views from the
modifications to the source code 202.”

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Coad. (Ex. 1016 at 18.)

[1.3.1] a parser layer which detects the one of the plurality of types of data
manipulation languages in which the retrieved source code is programmed and

Coad discloses this claim element. (See Ex. 1015, ¶¶ 90-91.) At col. 2, lines 57-58

and col. 5, lines 50-55, Coad discloses a parser layer configured to detect the

language of the retrieved source code:

“The method comprises the steps of determining the language of the source code of the
chosen file” (Coad at col. 2, lines 57-58.)

“The core 700 includes a parser 706 and an ICE 208. The parser 706 converts the
source code into the language-neutral representation in the TMM, and the ICE 208
converts the text from the displays into source code.” (Id. at col. 5, lines 50-55.)

[1.3.2] [the parser layer] which activates rules and logic applicable to the detected one
of the plurality of types of data manipulation languages; and

 -28-

CLI-2084525

Coad discloses this claim element. (See Ex. 1015, ¶ 92.) Coad discloses that the

parser layer is configured to apply rules and logic applicable to the detected

language. See Coad at col. 5, lines 50-55, reproduced above for element 1.3.1. See

also col. 16, lines 4-16:

“The software development tool then obtains a template for the current programming
language, i.e., a collection of generalized definitions for the particular language that can
be used to build the data structure (step 904). For example, the definition of a new Java
class contains a default name, e.g., ‘Class1,’ and the default code, ‘public class Class1 {
}.’ Such templates are well known in the art. For example, the ‘Microsoft Foundation
Class Library’ and the ‘Microsoft Word Template For Business Use Case Modeling’
are examples of standard template libraries from which programmers can choose
individual template classes. The software development tool uses the template to parse
the source code (step 906), and create the data structure (step 908).”

See also Tables 1-17 at col. 6, line 30 to col. 14, line 63, disclosing rules applied by

the parser layer.

[1.4] a visualizer dynamically linked to the editor for displaying graphical
representations of flows within the retrieved source code using the rules and logic
applicable to the detected one of the plurality of types of data manipulation languages
and activated by the parser,

Coad discloses this claim element. (See Ex. 1015, ¶¶ 93-107.) Coad discloses a

viewer (i.e., visualizer) for displaying graphical representations of flows in source

code at col. 16, line 57 to col. 17, line 47:

“The software development tool is collectively broken into three views of the
application: the static view, the dynamic view, and the functional view. The static view
is modeled using the use-case and class diagrams. A use case diagram 1200, depicted in
FIG. 12, shows the relationship among actors 1202 and use cases 1204 within the
system 1206. A class diagram 1300, depicted in FIG. 13 with its associated source code
1302, on the other hand, includes classes 1304, interfaces, packages and their
relationships connected as a graph to each other and to their contents.

 -29-

CLI-2084525

The dynamic view is modeled using the sequence, collaboration and statechart
diagrams. As depicted in FIG. 14, a sequence diagram 1400 represents an interaction,
which is a set of messages 1402 exchanged among objects 1404 within a collaboration
to effect a desired operation or result. In a sequence diagram 1400, the vertical
dimension represents time and the horizontal dimension represents different objects. A
collaboration diagram 1500, depicted in FIG. 15, is also an interaction with messages
1502 exchanged among objects 1504, but it is also a collaboration, which is a set of
objects 1504 related in a particular context. Contrary to sequence diagrams 1400 (FIG.
14), which emphasize the time ordering of messages along the vertical axis,
collaboration diagrams 1500 (FIG. 15) emphasize the structural organization of objects.

A statechart diagram 1600 is depicted in FIG. 16. The statechart diagram 1600 includes
the sequences of states 1602 that an object or interaction goes through during its life in
response to stimuli, together with its responses and actions. It uses a graphic notation
that shows states of an object, the events that cause a transition from one state to
another, and the actions that result from the transition.

The functional view can be represented by activity diagrams 1700 and more traditional
descriptive narratives such as pseudocode and minispecifications. An activity diagram
1700 is depicted in FIG. 17, and is a special case of a state diagram where most, if not
all, of the states are action states 1702 and where most, if not all, of the transitions are
triggered by completion of the actions in the source states. Activity diagrams 1700 are
used in situations where all or most of the events represent the completion of internally
generated actions.

There is also a fourth view mingled with the static view called the architectural view.
This view is modeled using package, component and deployment diagrams. Package
diagrams show packages of classes and the dependencies among them. Component
diagrams 1800, depicted in FIG. 18, are graphical representations of a system or its
component parts. Component diagrams 1800 show the dependencies among software
components, including source code components, binary code components and
executable components. As depicted in FIG. 19, Deployment diagrams 1900 are used to
show the distribution strategy for a distributed object system. Deployment diagrams
1900 show the configuration of run-time processing elements and the software
components, processes and objects that live on them.”

Figs. 11 – 17 of Coad depict aspects of the viewer for displaying graphical

representations of flows in source code. For example, Fig. 16 is an example of a

 -30-

CLI-2084525

graphical representation of flow disclosed in Coad, where a statechart diagram

1600 depicts the sequence of states 1602 that an object or interaction goes through

during its life in response to stimuli.

[1.5] wherein the editor, parser layer and visualizer cooperate such that edits made to
the source code using the editor are automatically reflected in the graphical
representations of flows displayed by the visualizer and edits made to the graphical
representations of flows in the visualizer are automatically reflected in the source code
displayed by the editor.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 108-110.) Coad discloses that

graphical and textual views are synchronized such that modifications made to one

view are automatically reflected in the other view, as disclosed at col. 4, line 61 to

col. 5, line 3:

“The improved software development tool provides simultaneous round-trip
engineering, i.e., the graphical representation 204 is synchronized with the textual
representation 206. Thus, if a change is made to the source code 202 via the graphical
representation 204, the textual representation 206 is updated automatically. Similarly, if
a change is made to the source code 202 via the textual representation 206, the
graphical representation 204 is updated to remain synchronized. There is no repository,
no batch code generation, and no risk of losing code.”

 Complementsoft’s arguments made with respect to Coad during prosecution are

inconsistent with the claim language and lack technical merit. In particular, the

argument that equated “data manipulation languages” with “unstructured programming

languages” is technically untrue because a person of ordinary skill in the art would

understand that most data manipulation languages are in fact structured programming

languages. (See Ex. 1015, ¶¶ 24-60.)

 -31-

CLI-2084525

 Further, the scope of claim 1, covering both program flows and data flows, is

inconsistent with the argument made by Complementsoft when distinguishing claim 1

from Coad. This is because the distinction argued by Complementsoft (i.e., that

displaying flow in unstructured programming languages is distinguishable from

displaying flow in structured programming languages) applies, if at all, only to

displaying program flows. This distinction does not apply to data flows. (Id. at ¶¶ 61-

68.)

 For these reasons, and in light of the fact that Coad discloses a “data

manipulation language” (see Ex. 1015, ¶¶ 48-54), Petitioner believes that the Office’s

rejection of claim 1 over Coad was proper and therefore proposes a similar ground of

unpatentability here.

C. Claim 1 Is Obvious Over Coad in View of Oracle Primer and
 Oracle8 Primer

 As discussed above, Coad discloses all limitations of claim 1. To the extent it

could be argued that any further disclosure may be required with respect to the “data

manipulation language” feature of claim 1, Oracle Primer and Oracle8 Primer provide

such further disclosure. As explained above in Section IV.C, a data manipulation

language is a programming language used to access data in a database, such as to

retrieve, insert, delete, or modify data in the database. The Oracle Primer and Oracle8

Primer references disclose that the programming languages used in the Coad reference

(i.e., Java and C++) included functions that allowed the programming languages to

 -32-

CLI-2084525

access data in a database. Therefore, Oracle Primer and Oracle8 Primer disclose that

the Java and C++ programming languages of Coad are “data manipulation languages,”

as recited in claim 1. (See Ex. 1015, ¶¶ 111-114.)

 For example, Oracle Primer discloses the JDBC (Java Database Connectivity)

application programming interface (API), which enables database access in the Java

programming language. (Ex. 1012, Oracle Primer at 187-189 and 194.) The Oracle8

Primer discloses that SQL can be embedded in the Java, C, and C++ programming

languages, thus allowing each of these languages to access data in a database. (Ex.

1013, Oracle8 Primer at 93, 95, 103, 108, 118, 277, 280, 281, 294, and 301.)

 Oracle Primer and Oracle8 Primer are combinable with Coad for the reasons

stated in Section V.A.16. (See also Ex. 1015, ¶ 115.)

D. Claims 1-3 and 5 Are Anticipated by Antis (U.S. Patent No.
 5,572,650)

1. Claim 1

 Claim 1 is anticipated by Antis as indicated below.

1. An integrated development environment, comprising:

Antis discloses this claim element. (See Ex. 1015, ¶¶ 125-127.) To the extent the

preamble is considered a limitation to the claim,3 Antis discloses a relational

3 See MPEP § 2111.02 Effect of Preamble (“The determination of whether a preamble

limits a claim is made on a case-by-case basis in light of the facts in each case”).

 -33-

CLI-2084525

database analysis system including a plurality of software development features,

at col. 2, lines 25-29; col. 3, lines 23-30; and Abstract:

“Therefore, there is a long felt need in the art for a method and apparatus for displaying
characteristics of a database without semantic information such that explicit and
implicit data structures can be readily observed to facilitate use, development and
maintenance of large databases.” (Antis at col. 2, lines 25-29, emphasis added.)

“Referring now to FIG. 1, a block diagram of an example of a relational database
analysis system 101 is shown. The system 101 includes terminal 103, which provides
output to and receives input from a user of the system, processor 113, which performs
the actual analysis operations, memory system 115, which contains programs 117
executed by processor 113 and relations 119cI19i, each of which contains a respective
set of attributes and tuples.” (Id. at col. 3, lines 23-30.)

“A method and apparatus for visually displaying structural characteristics of a large
database for visualizing areas where new developments may be added, or finding places
where old developments may need to be re-structured or replaced.” (Id. at Abstract.)

[1.1] a document manager for retrieving source code programmed using one of a
plurality of types of data manipulation languages;

Antis discloses this claim element. (See Ex. 1015, ¶¶ 128-131.) At col. 9, lines 45-

46, Antis discloses the use of Cscope, a “well known code browser,” to retrieve

source code programmed using one of a plurality of types of data manipulation

languages.

“[T]he source code references to the relations are extracted from a Cscope database
(Cscope is a well known code browser).”

Antis also discloses an “over view” display 201 of the relational database analysis

system, which is described at col. 4, lines 2-3, and depicted at Fig. 2:

“Display 201 is an over view, which is the highest view level of the large relational
database.”

 -34-

CLI-2084525

The over view can be used to retrieve source code via a plurality of different

methods. For example, as illustrated in Fig. 2, the display 201 of the over view

includes activity buttons near the top of the GUI window. The activity buttons

allow different views of the relational database analysis system to be invoked,

including a “code view.” From the code view, the aforementioned Cscope code

browser is used to retrieve source code:

“Across the top of display 201 are a number of activity buttons which may be activated
by the cursor to provide additional information about the selected relation, in this case
relation RLls_lnk. The buttons are labeled: Assocs (abbreviation for Associations),
Paths, Code, PRL (abbreviation for Population Rule Language, commonly referred to
as the Specification View), Layout, Relations List, Domains, Entity, and Distance.
Each of these buttons, except Distance, may be used to open another window on the
screen 105 (see FIG. 1) which displays another view of the relational database under
analysis.” (Antis at col. 4, line 60 to col. 5, line 3, emphasis added.)

Source code can also be retrieved from the over view by selecting one of the

relations displayed in the over view display 201. As disclosed at col. 7, lines 32-35,

based on the relation selected in the over view, source code that accesses the

selected relation is retrieved:

“The code view displays the application source code of the RDBMS that uses the
currently selected relation, in this case relation RLls_lnk.”

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Antis. (Ex. 1016 at 3.)

[1.2] an editor for displaying the retrieved source code and providing a means for a
user to edit the retrieved source code;

Antis discloses this claim element. (See Ex. 1015, ¶¶ 132-134.) Antis discloses an

 -35-

CLI-2084525

editor for displaying and editing retrieved source code in an “expanded code

view,” as illustrated at the bottom right hand corner of Fig. 12 and as described at

col. 8, lines 63-66:

“FIG. 12 shows an over view, a relations view, a path view and an expanded code view
all displayed in partially overlapping windows on a display screen.”

The expanded code view is used to edit the retrieved source code. Antis discloses

that changes made in any of the disclosed views (e.g., edits to the source code made

in the expanded code view or a definition of a new object) cause corresponding

changes in the other views, at col. 9, lines 17-28:

“The overall view is purely structural without semantic details to clutter it. If semantic
details are desired, they are available in views called the specification view and the code
view. If further structural details of a particular relation are desired, further details are
available in the associations view, the path view, the code view and the domain view.
The linking of the views makes them interactive with each other such that changes to
one view causes corresponding changes in the other actively linked views. This not only

 -36-

CLI-2084525

speeds up analysis, but also gives the user a chance to analyze the effects of any
changes, e.g. definition of a new object, on the relational database system.” (Emphasis
added.)

[1.3.1] a parser layer which detects the one of the plurality of types of data
manipulation languages in which the retrieved source code is programmed and

Antis discloses this claim element. (See Ex. 1015, ¶¶ 135-137.) At col. 9, lines 35-

41, Antis discloses a parser layer based on the YACC computer program. The

parser layer disclosed in Antis can be used for “any type of database” and is thus

used to detect any of a plurality of data manipulation languages having “a YACC

grammar”:

“For any type of database, the associations could be extracted from the database query
language with an A * version (A* is a combination of pattern matching that is based on
AWK, and parsing that is based on YACC which allows AWK style pattern matching
to be applied to grammar productions of a language specified with a YACC grammar)
built for that language grammar.” (Emphasis added.)

See also id. at col. 5, lines 4-8, disclosing applicability of the relational database

analysis system to multiple different data manipulation languages:

“Referring now to FIG. 3, a display 301 is shown on display screen 105 that is called
the specification view. In the specification view the actual specification(s) of the
database in the database description language or languages that are understood by the
RDBMS may be directly viewed.” (Emphasis added.)

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Antis. (Ex. 1016 at 3.)

[1.3.2] [the parser layer] which activates rules and logic applicable to the detected one
of the plurality of types of data manipulation languages; and

Antis discloses this claim element. (See Ex. 1015, ¶ 138.) Antis discloses that the

 -37-

CLI-2084525

parser layer based on the YACC computer program activates rules and logic for a

detected one of the plurality of types of languages. See Antis at col. 9, lines 35-41,

reproduced above for element 1.3.1. Additionally, in documents filed in the

related litigation, Complementsoft has conceded that this claim element is

disclosed in Antis. (Ex. 1016 at 3.)

[1.4] a visualizer dynamically linked to the editor for displaying graphical
representations of flows within the retrieved source code using the rules and logic
applicable to the detected one of the plurality of types of data manipulation languages
and activated by the parser,

Antis discloses this claim element. (See Ex. 1015, ¶¶ 139-146.) Antis discloses a

visualizer for displaying graphical representations of flows within the retrieved

source code in a “code view,” as illustrated at Fig. 8 and as described at col. 7, lines

31-45. Specifically, the code view provides a graphical display of flow in the

retrieved source code by providing a visual representation of the data within the

relational database (i.e., the relations) that are accessed by the retrieved source

code. The code view also depicts a graphical display of flow by providing a visual

representation of which pieces of source code are executed for a selected relation,

where the relation is selected via the over view display described above:

“Referring now to FIG. 8, a display 801 is shown on display screen 105 that is called
the code view. The code view displays the application source code of the RDBMS that
uses the currently selected relation, in this case relation RLls_lnk. The application
source code may be represented as a horizontal tree representing the code hierarchy.
The subset or subsets of that horizontal code tree that use the currently selected relation
are displayed in the code view. The code view may be used by the user to find the 40
application source code which references a relation and also to find where in the

 -38-

CLI-2084525

application source code the relation is accessed. The code view is linked to the over
view such that all relations accessed from a unit of application code may be easily
identified. Each unit of application code is represented 45 by a box in the code view.”
(Emphasis added.)

The code view of Antis further discloses a graphical representation of flow within

the retrieved code at col. 7, lines 51-53. This portion discloses that clicking on a

code box (i.e., an icon associated with a particular piece of source code) produces a

visual representation of the data in the relational database (i.e., the relations) that

are accessed by the particular piece of source code:

“Clicking the mouse button on a code box highlights in the over view all relations that
use the corresponding unit of code.”

Antis further discloses a graphical representation of flows within the retrieved

source code at col. 7, lines 57-61. This portion discloses that a parallel flow of

execution is displayed in the code view if the retrieved source code is executed on

multiple processors (i.e., the code view display will be changed depending on the

number of processors executing the retrieved source code, thus providing a

graphical display of the flow of execution for the code):

“For the purposes of the code view, application code executing on multiple separate
processors in a distributed system is considered to be multiple separate applications,
each of which may be examined as a separate code sub-tree.”

[1.5] wherein the editor, parser layer and visualizer cooperate such that edits made to
the source code using the editor are automatically reflected in the graphical
representations of flows displayed by the visualizer and edits made to the graphical
representations of flows in the visualizer are automatically reflected in the source code
displayed by the editor.

 -39-

CLI-2084525

Antis discloses this claim element. (See Ex. 1015, ¶¶ 147-149.) Antis discloses that

the various views (i.e., the over view, code view, etc.) of the of the relational

database analysis system are linked, such that changes made in one view are

automatically made in the other linked views, at col. 9, lines 17-28:

“The overall view is purely structural without semantic details to clutter it. If semantic
details are desired, they are available in views called the specification view and the code
view. If further structural details of a particular relation are desired, further details are
available in the associations view, the path view, the code view and the domain view.
The linking of the views makes them interactive with each other such that changes to
one view causes corresponding changes in the other actively linked views. This not only
speeds up analysis, but also gives the user a chance to analyze the effects of any
changes, e.g. definition of a new object, on the relational database system.” (Emphasis
added.)

2. Claim 2

 Claim 2 is anticipated by Antis as indicated below.

2. The integrated development environment as recited in claim 1, wherein the graphical
representations of flows depict data flows.

Antis discloses this claim element. (See Ex. 1015, ¶¶ 150-153.) The code view of

Antis discloses graphical representations of data flows within the retrieved source

code, as described at col. 7, lines 31-45 (reproduced above for element 1.4 of claim

1). Specifically, the code view provides a visualization of data flows in the

retrieved source by providing a visual representation of which pieces of source

code access which data in the relational database.

3. Claim 3

 Claim 3 is anticipated by Antis as indicated below.

 -40-

CLI-2084525

3. The integrated development environment as recited in claim 1, wherein the graphical
representations of flows depict program flows.

Antis discloses this claim element. (See Ex. 1015, ¶¶ 154-157.) The code view of

Antis discloses graphical representations of program flows within the retrieved

source code, as described at col. 7, lines 31-45 (reproduced above for element 1.4

of claim 1). Specifically, the code view provides a visualization of program flows

in the retrieved source by providing a visual representation of which pieces of

source code are executed for a selected relation of the database. Antis further

discloses a graphical representation of program flows at col. 7, lines 57-61. This

portion discloses that a parallel flow of execution (i.e., program flows) is displayed

in the code view if the retrieved source code is executed on multiple processors:

“For the purposes of the code view, application code executing on multiple separate
processors in a distributed system is considered to be multiple separate applications,
each of which may be examined as a separate code sub-tree.” (Antis at col. 7, lines 57-
61.)

4. Claim 5

 Claim 5 is anticipated by Antis as indicated below.

5. The integrated development environment as recited in claim 1, wherein the
document manager retrieves all files related to the source code to be edited.

Antis discloses this claim element. (See Ex. 1015, ¶¶ 158-161.) At col. 7, lines 31-

35, Antis discloses that the code view is used to retrieve source code related to a

relation that is selected in the over view. Further, as explained above with

reference to claim 1, the expanded code view of Antis depicted in Fig. 12 allows the

 -41-

CLI-2084525

retrieved code to be edited:

“Referring now to FIG. 8, a display 801 is shown on display screen 105 that is called
the code view. The code view displays the application source code of the RDBMS that
uses the currently selected relation, in this case relation RLls_lnk.”

Further, at col. 7, lines 39-44, Antis discloses that all pieces of source code related

to the selected relation are retrieved:

“The code view may be used by the user to find the 40 application source code which
references a relation and also to find where in the application source code the relation is
accessed. The code view is linked to the over view such that all relations accessed from
a unit of application code may be easily identified.”

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Antis. (Ex. 1016 at 5.)

E. Claims 1-3, 5, 6, 8, 10-12, 15, and 16 Are Obvious Over Antis in
 View of Coad

1. Claim 1

 As discussed above, Antis discloses all limitations of claim 1. To the extent it

could be argued that any further disclosure may be required with respect to limitations

1.2, 1.4, and 1.5, Coad provides such further disclosure as follows.

[1.2] an editor for displaying the retrieved source code and providing a means for a
user to edit the retrieved source code;

Coad discloses this claim element. (See Ex. 1015, ¶¶ 88-89.) Coad discloses an

incremental code editor (ICE) for displaying and editing retrieved source code.

See Coad at col. 4, lines 54-60, reproduced above for element 1.2 of claim 1.

 -42-

CLI-2084525

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Coad. (Ex. 1016 at 18.)

[1.4] a visualizer dynamically linked to the editor for displaying graphical
representations of flows within the retrieved source code using the rules and logic
applicable to the detected one of the plurality of types of data manipulation languages
and activated by the parser,

Coad discloses this claim element. (See Ex. 1015, ¶¶ 93-107.) Coad discloses a

viewer (i.e., visualizer) for displaying graphical representations of flows in source

code at col. 16, line 57 to col. 17, line 47, reproduced above for element 1.4 of claim

1. Further, Figs. 11 – 17 of Coad depict aspects of the viewer for displaying

graphical representations of flows in source code. For example, Fig. 16 is an

example of a graphical representation of flow disclosed in Coad, where a

statechart diagram 1600 depicts the sequence of states 1602 that an object or

interaction goes through during its life in response to stimuli.

[1.5] wherein the editor, parser layer and visualizer cooperate such that edits made to
the source code using the editor are automatically reflected in the graphical
representations of flows displayed by the visualizer and edits made to the graphical
representations of flows in the visualizer are automatically reflected in the source code
displayed by the editor.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 108-110.) Coad discloses a

software development tool that allows a developer to simultaneously view a

graphical representation and a text representation of source code. (See, e.g. Coad

at Abstract and Fig. 2.) The graphical and textual views are synchronized such

that modifications made to one view are automatically reflected in the other view,

 -43-

CLI-2084525

as disclosed at col. 4, line 61 to col. 5, line 3 (reproduced above for element 1.5 of

claim 1).

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) The proposed ground of unpatentability based on Antis and

Coad is included because Coad provides additional details on the visualization of flow

that are not provided in Antis. The proposed ground of unpatentability is further

included because the Office previously found that Coad disclosed these claim

limitations, and this finding was not disputed by Complementsoft. (Ex. 1002, Office

Action dated May 31, 2005, at 3, and Ex. 1003, Amendment dated August 4, 2005, at

9-12.)

2. Claim 2

 As discussed above, Antis discloses all limitations of claim 2. To the extent it

could be argued that any further disclosure may be required with respect to the

limitations of claim 2, Coad provides such further disclosure as follows.

2. The integrated development environment as recited in claim 1, wherein the graphical
representations of flows depict data flows.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 168-171.) Coad discloses a

visualizer for displaying graphical representations of data flows at col. 16, line 57

to col. 17, line 47, reproduced above for element 1.4 of claim 1.

 -44-

CLI-2084525

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) The proposed ground of unpatentability based on Antis and

Coad is included because Coad provides additional details on the visualization of data

flow that are not provided in Antis. The proposed ground of unpatentability is further

included because the Office previously found that Coad disclosed this claim limitation,

and this finding was not disputed by Complementsoft. (Ex. 1002, Office Action dated

May 31, 2005, at 4, and Ex. 1003, Amendment dated August 4, 2005, at 9-12.)

3. Claim 3

 As discussed above, Antis discloses all limitations of claim 3. To the extent it

could be argued that any further disclosure may be required with respect to the

limitations of claim 3, Coad provides such further disclosure as follows.

3. The integrated development environment as recited in claim 1, wherein the graphical
representations of flows depict program flows.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 172-175.) Coad discloses a

visualizer for displaying graphical representations of program flows at col. 16, line

57 to col. 17, line 47, reproduced above for element 1.4 of claim 1.

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) The proposed ground of unpatentability based on Antis and

Coad is included because Coad provides additional details on the visualization of

program flow that are not provided in Antis. The proposed ground of unpatentability is

further included because the Office previously found that Coad disclosed this claim

 -45-

CLI-2084525

limitation, and this finding was not disputed by Complementsoft. (Ex. 1002, Office

Action dated May 31, 2005, at 4, and Ex. 1003, Amendment dated August 4, 2005, at

9-12.)

4. Claim 5

 Claim 5 depends from claim 1, which, as discussed above, is obvious over Antis

in view of Coad. As explained in Section V.D.4, Antis discloses the additional

limitations in claim 5, which accordingly is obvious over Antis in view of Coad. (See

Ex. 1015, ¶ 176.)

5. Claim 6

 Claim 6 depends from claim 1, which, as discussed above, is (1) anticipated by

Antis and (2) obvious over Antis in view of Coad. Coad discloses the additional

limitations in claim 6, which accordingly is obvious over Antis in view of Coad.

6. The integrated development environment as recited in claim 1, wherein the
document manager comprises a site manager and a connectivity layer for retrieving
source code from one or more remote computers.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 177-180.) At col. 5, lines 31-

49, Coad discloses that an incremental code editor (ICE) (see, e.g., Fig. 2 and col.

4, line 58) includes site manager and connectivity layer functionality for retrieving

source code from remote computers over the Internet:

“FIG. 6 depicts a data processing system 600 suitable for practicing methods and
systems consistent with the present invention. Data processing system 600 comprises a
memory 602, a secondary storage device 604, an I/O device 606, and a processor 608.
Memory 602 includes the improved software development tool 610. The software
development tool 610 is used to develop a software project 612, and create the TMM

 -46-

CLI-2084525

200 in the memory 602. The project 612 is stored in the secondary storage device 604
of the data processing system 600. One skilled in the art will recognize that data
processing system 600 may contain additional or different components.

Although aspects of the present invention are described as being stored in memory, one
skilled in the art will appreciate that these aspects can also be stored on or read from
other types of computer-readable media, such as secondary storage devices, like hard
disks, floppy disks or CD-ROM; a carrier wave from a network, such as Internet; or
other forms of RAM or ROM either currently known or later developed.”

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Coad. (Ex. 1016 at 20-21.)

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) During prosecution, the Office found that Coad disclosed this

claim limitation, and Complementsoft did not dispute this finding. (Ex. 1002, Office

Action dated May 31, 2005, at 4, and Ex. 1003, Amendment dated August 4, 2005, at

9-12.)

6. Claim 8

 Claim 8 depends from claim 1, which, as discussed above, is (1) anticipated by

Antis and (2) obvious over Antis in view of Coad. Coad discloses the additional

limitations in claim 8, which accordingly is obvious over Antis in view of Coad.

8. The integrated development environment as recited in claim 1, wherein the editor
comprises a template manager for allowing preprogrammed segment of source code to
be placed within the source code being edited.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 181-185.) At col. 16, lines 4-9,

Coad discloses “a collection of generalized definitions for the particular language

 -47-

CLI-2084525

that can be used to build [a] data structure.” The generalized definitions include

“default code” that can be placed within source code being edited.

“The software development tool then obtains a template for the current programming
language, i.e., a collection of generalized definitions for the particular language that can
be used to build the data structure (step 904). For example, the definition of a new Java
class contains a default name, e.g., ‘Class1,’ and the default code, ‘public class Class1 {
}.’ Such templates are well known in the art.”

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.)

7. Claim 10

 Claim 10 depends from claim 8, which, as discussed above, is obvious over

Antis in view of Coad. Coad discloses the additional limitations in claim 10, which

accordingly is obvious over Antis in view of Coad.

10. The integrated development environment as recited in claim 8, wherein the
template manager is adapted to automatically generate segments of the source code.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 186-190.) Coad discloses that

the template manager is configured to automatically generate segments of source

code. See Coad at col. 16, lines 4-9, reproduced above for claim 8.

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.)

8. Claim 11

 Claim 11 depends from claim 1, which, as discussed above, is (1) anticipated by

Antis and (2) obvious over Antis in view of Coad. Coad and Antis disclose the

 -48-

CLI-2084525

additional limitations in claim 11, which accordingly is obvious over Antis in view of

Coad.

11. The integrated development environment as recited in claim 1, further comprising a
means for allowing the source code to be executed both locally and remotely.

Coad and Antis disclose this claim element. (See Ex. 1015, ¶¶ 191-195.) Coad

discloses that the ICE editor includes functionality for allowing retrieved source to

be executed locally (i.e., from a local memory) or remotely (i.e., via the Internet).

See Coad at col. 5, lines 31-49, reproduced above for claim 6. Further, at col. 7,

lines 55-61, Antis discloses a distributed system with remote execution of source

code:

“If there are multiple applications that use the same relation, the result will be multiple
code sub-trees in the code view, as sub-trees 805 and 809. For the purposes of the code
view, application code executing on multiple separate processors in a distributed system
is considered to be multiple separate applications, each of which may be examined as a
separate code sub-tree.”

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) During prosecution, the Office found that Coad disclosed this

claim limitation. (Ex. 1002, Office Action dated May 31, 2005, at 4.)

9. Claim 12

 Claim 12 depends from claim 11, which, as discussed above, is obvious over

Antis in view of Coad. Coad discloses the additional limitations in claim 12, which

accordingly is obvious over Antis in view of Coad.

12. The integrated development environment as recited in claim 11, wherein the parser
layer further examines error log files generated by the means for allowing the source

 -49-

CLI-2084525

code to be executed to determine segments of the source code determined to include
errors.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 196-201.) At col. 9, line 66 to

col. 10, line 5, Coad discloses a quality assurance (QA) module for detecting

segments of source code containing errors. If the QA module determines that the

source code “does not conform, an error message is provided to the developer”

(see Coad at col. 14, lines 64-65):

“The QA module also provides audits, i.e., the module checks for conformance to
predefined or user-defined styles. The types of audits provided by the module include
coding style, critical errors, declaration style, documentation, naming style,
performance, possible errors and superfluous content. Examples of these audits with
their respective definitions are identified in Tables 10-17 below.”

See also Coad at col. 10, line 8 to col. 14, line 63, disclosing Tables 10-17, including

examples of coding style audits, critical error audits, and declaration style audits,

among others.

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) During prosecution, the Office found that Coad disclosed this

claim limitation. (Ex. 1002, Office Action dated May 31, 2005, at 4.)

10. Claim 15

 Claim 15 depends from claim 12, which, as discussed above, is obvious over

Antis in view of Coad. Coad discloses the additional limitations in claim 15, which

accordingly is obvious over Antis in view of Coad.

15. The integrated development environment as recited in claim 12, further comprising

 -50-

CLI-2084525

a message manager cooperating with the parser layer for displaying debugging hints as
a function of the source code segments determined to have errors.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 202-208.) Coad discloses a

quality assurance (QA) module for determining segments of source code including

errors. See Coad at col. 9, line 66 to col. 10, line 5, reproduced above for claim 12.

At col. 14, line 64 to col. 15, line 16, Coad further discloses that if errors in the

source code are detected by the QA module, an error message is provided to the

developer:

“If the QA module determines that the source code does not conform, an error message
is provided to the developer. For example, as depicted in FIG. 8A, the software
development tool checks for a variety of coding styles 800. If the software development
tool were to check for ‘Access Of Static Members Through Objects’ 802, it would
verify whether static members are referenced through class names rather than through
objects 804. Further, as depicted in FIG. 8B, if the software development tool were to
check for ‘Complex Assignment’ 806, the software development tool would check for
the occurrence of multiple assignments and assignments to variables within the same
expression to avoid complex assignments since these decrease program readability 808.
An example of source code having a complex assignment 810 and source code having a
non-complex assignment 812 are depicted in FIGS. 8B and 8C, respectively. The QA
module of the software development tool scans the source code for other syntax errors
well known in the art, as described above, and provides an error message if any such
errors are detected.”

At Fig. 8B, Coad discloses a message manager for displaying debugging hints for a

variety of errors. As illustrated in Fig. 8B, the errors include, for example,

“Complex Assignment” and “Don’t Use the Negation Operator Frequently”

errors. An example debugging hint is illustrated in Fig. 8B (“Tip: Break

statement into several ones.”).

 -51-

CLI-2084525

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) During prosecution, the Office found that Coad disclosed this

claim limitation, and this finding was not disputed by Complementsoft. (Ex. 1002,

Office Action dated May 31, 2005, at 4, and Ex. 1003, Amendment dated August 4,

2005, at 9-12.)

11. Claim 16

 Claim 16 depends from claim 15, which, as discussed above, is obvious over

Antis in view of Coad. Coad discloses the additional limitations in claim 16, which

accordingly is obvious over Antis in view of Coad.

16. The integrated development environment as recited in claim 15, wherein the
message manager allows a user to edit and maintain debugging hints for a variety of
different errors.

Coad discloses this claim element. (See Ex. 1015, ¶¶ 209-213.) At Fig. 8B, Coad

discloses a message manager that maintains debugging tips for a variety of errors.

As illustrated in Fig. 8B, the errors include, for example, “Complex Assignment”

and “Don’t Use the Negation Operator Frequently” errors. Corresponding

debugging tips are maintained for each of the errors.

 Coad is combinable with Antis for the reasons stated in Section V.A.3. (See also

Ex. 1015, ¶¶ 164-167.) During prosecution, the Office found that Coad disclosed this

claim limitation, and this finding was not disputed by Complementsoft. (Ex. 1002,

 -52-

CLI-2084525

Office Action dated May 31, 2005, at 4, and Ex. 1003, Amendment dated August 4,

2005, at 9-12.)

F. Claim 4 Is Obvious Over Antis in View of Coad and
 Burkwald (U.S. Patent No. 6,356,285)

 Claim 4 depends from claim 1, which, as discussed above, is obvious over Antis

in view of Coad. Burkwald discloses the additional limitations in claim 4, which

accordingly is obvious over Antis in view of Coad and Burkwald.

4. The integrated development environment as recited in claim 1, wherein the graphical
representations of data flows are expandable and collapsible.

Burkwald discloses this claim element. (See Ex. 1015, ¶¶ 214-217.) At col. 14, line

43 to col. 15, line 4, Burkwald discloses a software visualization technique that

allows a user to expand or collapse a displayed graphical representation of source

code:

“In FIGS. 6-8, each bar 612 of the bar chart 610 represents one of the subsystems of the
large systems 110 or one of the small systems 120 of the exemplary legacy software
application. As shown in the bar chart 610 of FIGS. 6-8, the height of each bar 612 is
proportional to the numbers of the programs 114 in each of the subsystems 116, sorted
in decreasing order. For each program 114 in the legacy software application, the
collapsed values list 620 shows both the McCabe complexity metric 622 and the
McClure complexity metric 624, the total number of lines 626, and the total number of
affected lines 628. It should be appreciated that, while FIGS. 6-8 show the collapsed
values list 620 using the above-outlined metrics and statistical values for the software
subsystem, the collapsed values list 620 can be used to show collapsed values for any
metric and/or any statistic for which values have been obtained. That is, the analyst can
interactively change the displayed metrics and statistics to any metric and/or statistic for
which the analyst has generated data for the software application being displayed.

By manipulating the zoom bar 629 of the values list 620, the user can expand or
collapse the values list 620 shown in FIG. 6 to control the height consumed by each line
of data. In the views 600-800 shown in FIGS. 6-8, the values list 620 has been

 -53-

CLI-2084525

collapsed so that each line of data is shown as a one-pixel high row. Furthermore, the
rows have been sorted in decreasing order according to the number of affected lines
628. The length of each row encodes the value of the corresponding metric.”

 Burkwald is combinable with Antis and Coad for the reasons stated in Section

V.A.5. (See also Ex. 1015, ¶ 218.) During prosecution, the Office found that Burkwald

disclosed this claim limitation, and this finding was not disputed by Complementsoft.

(Ex. 1002, Office Action dated May 31, 2005, at 4-6, and Ex. 1003, Amendment dated

August 4, 2005, at 9-12.)

G. Claim 7 Is Obvious Over Antis in view of Coad and Eick (U.S.
 Patent No. 5,937,064)

 Claim 7 depends from claim 6, which, as discussed above, is obvious over Antis

in view of Coad. Eick discloses the additional limitations in claim 7, which accordingly

is obvious over Antis in view of Coad and Eick.

7. The integrated development environment as recited in claim 6, wherein the
document manager comprises a security layer for managing secure connections with
the one or more remote computers.

Eick discloses this claim element. (See Ex. 1015, ¶¶ 219-223.) Eick discloses a

“system and method for visual analysis of a database.” (Eick at Abstract.) The

disclosed system and method allow a variety of remote clients to access

information from a database for the purpose of allowing the clients to perform

interactive visualization of the database. At col. 4, lines 19-27, Eick discloses a

security layer for managing secure connections with the remote clients:

“Two approaches may be used to permit only authorized access to the database or
authorization to change the database. One approach from the web server side would be

 -54-

CLI-2084525

to pass data or access to the data base to the client upon showing the appropriate
password. The other would be to have the CGI 22 scripts paths translated to pass
encrypted data and make the data available and then pass the data to the applet which
would then decide what data to show the client in view of establishing the appropriate
security.”

See also id. at claims 7 and 8:

“7. The method of claim 6 in which said live document program includes a security
subprogram which prevents display of at least one selected part of the data unless
preselected security requirements are satisfied at the at least one computer terminal.”

“8. The method of claim 7 including the step of selectively decoding encrypted data
only if the preselected security requirements are satisfied.”

Additionally, in documents filed in the related litigation, Complementsoft has

conceded that this claim element is disclosed in Eick. (Ex. 1016 at 6.)

 Eick is combinable with Antis and Coad for the reasons stated in Section V.A.9.

(See also Ex. 1015, ¶ 224.)

H. Claim 9 Is Obvious Over Antis in view of Coad and “Building
 Applications”

 Claim 9 depends from claim 8, which, as discussed above, is obvious over Antis

in view of Coad. “Building Applications” discloses the additional limitations in claim

9, which accordingly is obvious over Antis in view of Coad and “Building

Applications.”

9. The integrated development environment as recited in claim 8, wherein the template
manager is adapted to automatically correct segments of the source code.

“Building Applications” discloses this claim element. (See Ex. 1015, ¶¶ 225-229.)

 -55-

CLI-2084525

At page 54, “Building Applications” discloses that “automatic syntax checking”

may be enabled, which allows for syntax errors to be detected and corresponding

error messages to be displayed:

“Automatic syntax checking – As you move the insertion point off a line, Visual Basic
checks the syntax of that line and displays a message if it finds an error. To enable
automatic syntax checking, select the Auto Syntax Check check box on the Module tab
of the Options dialog box (Tools menu).”

Further, at pages 52-53, “automatic statement building” is used to assist the user

in writing source code by providing pre-written segments of source code that can

be selected by the user. Thus, the automatic syntax checking informs the user of

errors in the source code, and the automatic statement building provides segments

of source code to the user, such that the errors can be automatically corrected:

“Automatic statement building. When you type certain Visual Basic elements,
Microsoft Access automatically tries to assist you in writing code by displaying a drop-
down list of appropriate choices for the code element you’ve typed. For example, if
you type an object variable, and follow it with a period to indicate that you intend to
enter a method or property, Microsoft Access automatically displays a list of the
methods and properties that apply to the object. . . . To complete the statement you’re
typing, you can either click an item in the list or continue typing your code. If you
continue typing code, the list displays the closest match to what you’ve typed. To enter
the selected item in the list at any time, press TAB. To make the list disappear, press
ESC.”

 “Building Applications” is combinable with Antis and Coad for the reasons

stated in Section V.A.13. (See also Ex. 1015, ¶ 230.)

 -56-

CLI-2084525

I. Claim 13 Is Obvious Over Antis in view of Coad and Corda (U.S.
 Patent No. 5,758,122)

 Claim 13 depends from claim 12, which, as discussed above, is obvious over

Antis in view of Coad. Corda discloses the additional limitations in claim 13, which

accordingly is obvious over Antis in view of Coad and Corda.

13. The integrated development environment as recited in claim 12, wherein the
visualizer cooperates with the parser layer to change the appearance of displayed flows
as a function of the source code segments determined to have errors.

Corda discloses this claim element. (See Ex. 1015, ¶¶ 231-235.) Corda discloses an

“immersive visual programming environment” that “permits the flow of data

objects and the interaction among the data objects to be visually displayed to the

user.” (Corda at Abstract.) Corda further discloses that if an error is detected in

source code, the programming environment changes the appearance of the

displayed flow:

“Once the programmer is satisfied that the program as constructed is complete,
compilation provides visual and/or audio clues as to the nature and location of compiler
errors.” (Corda at col. 4, lines 30-32.)

“Semantic error detection is enhanced through observation of the flow of data and the
motion of the structure itself. In this way, the virtual programming environment of the
present invention supports verification and validation. Run-time error messages in the
form of sight and sound alerts are provided, with the offending component highlighted
in some way.” (Id. at col. 4, lines 41-48.)

“A method for programming . . . , said method comprising the steps of . . . compiling
the computer program while providing visual and audio clues to a user in response to a
detected compiler error, said clues indicating a location and nature of the detected
compiler error” (Id. at col. 13, lines 13-22.)

 -57-

CLI-2084525

 Corda is combinable with Antis and Coad for the reasons stated in Section

V.A.11. (See also Ex. 1015, ¶ 236.)

J. Claim 14 Is Obvious Over Antis in view of Coad and Access 97
 Visual Basic

 Claim 14 depends from claim 12, which, as discussed above, is obvious over

Antis in view of Coad. Access 97 Visual Basic discloses the additional limitations in

claim 14, which accordingly is obvious over Antis in view of Coad and Access 97

Visual Basic.

14. The integrated development environment as recited in claim 12, wherein the editor
cooperates with the parser layer to change the appearance of portions of the displayed
source code as a function of the software segments determined to have errors.

Access 97 Visual Basic discloses this claim element. (See Ex. 1015, ¶¶ 237-241.) At

page 140, Access 97 Visual Basic discloses that code determined to have an errors

is highlighted or shown in red text:

“Now that you’ve cleared away that message, you’ll notice that the ‘<’ symbol is
highlighted – this is the point in the line that Microsoft Access doesn’t like – and the
line is still shown in red text.”

 Access 97 Visual Basic is combinable with Antis and Coad for the reasons stated

in Section V.A.7. (See Ex. 1015, ¶ 242.)

K. Dependent Claims 2-16 Are Unpatentable Over Each Reference
 and Combination of References Asserted for Claim 1 in View of
 the Prior Art

 To the extent that they are not explicitly enumerated above, Petitioner hereby

asserts grounds of unpatentability for dependent claims 2-16 that are premised upon the

 -58-

CLI-2084525

respective prior art references asserted for those dependent claims in view of the

following ground of unpatentability for independent claim 1 asserted above: Claim 1 is

obvious over Coad in view of Oracle Primer and Oracle8 Primer.

(See Ex. 1015, ¶¶ 243-244.)

VI. Mandatory Notices Pursuant to 37 C.F.R. § 42.8(a)(1)

Pursuant to 37 C.F.R. § 42.8(a)(1), the mandatory notices identified in 37 C.F.R.

§ 42.8(b) are provided below as part of this Petition.

A. C.F.R. § 42.8(b)(a): Real Party-In-Interest

SAS is the real party-in-interest for Petitioner.

B. C.F.R. § 42.8(b)(2): Related Matters

The ‘936 patent is currently the subject of a patent infringement lawsuit brought

by the assignee of the ‘936 patent, Complementsoft LLC, against SAS, captioned

ComplementSoft, LLC v. SAS Institute Inc., Docket No. 1:12-cv-07372 (N.D. Ill. Sept

14, 2012). This judicial matter may affect, or be affected by, decisions made in this

proceeding.

C. C.F.R. § 42.8(b)(3) and (4): Lead and Back-up Counsel and
 Service Information

SAS provides the following designation of counsel:

Lead Counsel Back-up Counsel
David B. Cochran
Reg. No. 39,142
JONES DAY
901 Lakeside Avenue

John V. Biernacki
Reg. No. 40,511
JONES DAY
901 Lakeside Avenue

 -59-

CLI-2084525

Cleveland, Ohio 44114
(216) 586-7029
dcochran@jonesday.com

Cleveland, Ohio 44114
(216) 586-7747
jvbiernacki@jonesday.com

John A. Marlott
Reg. No. 37,031
JONES DAY
77 West Wacker
Suite 3500
Chicago, Illinois 60601-1692
(312) 269-4236
 jamarlott@jonesday.com

Pursuant to 37 C.F.R. § 42.10(b), a Power of Attorney accompanies this Petition.

Please address all correspondence to lead and back-up counsel at the address above.

SAS also consents to electronic service by email at the email addresses listed above.

VII. Conclusion

 For at least the reasons set forth above, Petitioner requests inter partes review of

the ‘936 patent because it is more likely than not that at least one of the claims

challenged in this Petition is unpatentable. It is therefore respectfully submitted that this

Petition be granted and claims 1-16 of the ‘936 patent be judged invalid. Counsel for

the Petitioner may be contacted at the below listed telephone number. As identified in

the attached Certificate of Service and in accordance with §§ 1.33(c), 42.205, and

42.300, a copy of the present Request, in its entirety, is being served on the patent

owner at the correspondence address of record for the subject patent as reflected in the

publicly-available records of the United States Patent and Trademark Office as

designated in the Office's Patent Application Information Retrieval system.

 -60-

CLI-2084525

 The Director is hereby authorized to charge any deficiency in the fees filed,

asserted to be filed or which should have been filed herewith (or with any paper

hereafter filed in this proceeding by this firm) to Jones Day Deposit Account No. 50-

1432, ref: 343355-610009.

 Respectfully submitted,

Date: March 29, 2013 /John V. Biernacki/

John V. Biernacki
Registration No. 40,511
JONES DAY
North Point, 901 Lakeside Avenue
Cleveland, Ohio 44114-1190

Direct No. (216) 586-7747

CLI-2084525

CERTIFICATE OF SERVICE

The undersigned hereby certifies that a copy of the foregoing Petition for Inter

Partes Review of U.S. Patent No. 7,110,936, along with all exhibits supporting and

filed with the Petition, were served on March 29, 2013, via Express Mail delivery

directed to the attorney of record for the patent at the following address:

Barry Horwitz
Greenberg Traurig, LLP
77 West Wacker Drive
Suite 3100
Chicago, IL 60601-1732

Date: March 29, 2013 /John V. Biernacki/

John V. Biernacki
Registration No. 40,511
JONES DAY
North Point, 901 Lakeside Avenue
Cleveland, Ohio 44114-1190

CLI-2084525

EXHIBIT LIST

EXHIBIT
NO.

TITLE

1001 U.S. Patent No. 7,110,936 (“the ‘936 Patent”)

1002 Excerpt from the file history of the ‘936 Patent: May 31, 2005
Office Action

1003 Excerpt from the file history of the ‘936 Patent: August 4, 2005
Response to Office Action

1004 Excerpt from the file history of the ‘936 Patent: August 1, 2006
Supplemental Notice of Allowability

1005 U.S. Patent No. 5,572,650 (“Antis”)

1006 U.S. Patent No. 6,851,107 (“Coad”)

1007 U.S. Patent No. 6,356,285 (“Burkwald”)

1008 U.S. Patent No. 5,937,064 (“Eick”)

1009 “Microsoft Access 97 Visual Basic Step by Step” (“Access 97
Visual Basic”)

1010 U.S. Patent No. 5,758,122 (“Corda”)

1011 “Building Applications with Microsoft Access 97” (“Building
Applications”)

 -2-

CLI-2084525

1012 Oracle Programming – A Primer (“Oracle Primer”)

1013 Oracle8 Programming: A Primer (“Oracle8 Primer”)

1015 Declaration of Dr. Nick Roussopoulos Under 37 C.F.R. § 1.68 in
Support of Petition for Inter Partes Review of U.S. Patent No.
7,110,936

1016 Complementsoft’s LPR 2.5 Initial Response to SAS Institute’s
Invalidity Contentions, ComplementSoft, LLC v. SAS Institute Inc.,
Docket No. 1:12-cv-07372 (N.D. Ill. Sept 14, 2012)

1017 Declaration of Morris M. Jackson Under 37 C.F.R. § 1.68

1018 Pearson Customer Service Website

1019 Outgoing Email Message from Morris M. Jackson

1020 Email Message Received by Morris M. Jackson

1021 “Advanced System Editor, Enhanced P-System Editor,” Joel Pitt,
Infoworld, September 26, 1983

1022 “Encyclopedia of Computer Science, Fourth Edition,” Anthony
Ralston et al. eds., Nature Publishing Group 2000

1023 “IBM Dictionary of Computing,” George McDaniel ed., McGraw-
Hill 1994

1024 “The New IEEE Standard Dictionary of Electrical and Electronics
Terms, Fifth Edition,” Christopher J. Booth ed., The Institute of
Electrical and Electronics Engineers, Inc. 1993

 -3-

CLI-2084525

1025 “DB2 Update,” July 1999

1026 “dBase is Loaded,” Jan L. Harrington, MacUser, February 1, 1988

1027 “FoxPro 2.5 for Macintosh,” Jeffrey Sullivan, MacUser, June 1,
1994

1028 “McGraw-Hill Dictionary of Scientific and Technical Terms,” Fifth
Edition, McGraw-Hill, Inc., New York, 1994

1029 “Use Cases in Object-Oriented Software Development,” Mehmet
Aksit, et al., AMIDST, February 5, 1999

1030 “Conformance Testing of Object-Oriented Components Specified
by State/Transition Classes,” Leonard Gallagher, National Institute
of Standards and Technology, Information Technology Laboratory,
May 19, 1999

1031 “Flowcharts, State Transition Tables and State Transition
Diagrams,” Herbert J. Bernstein, 1999

1032 “An ASM Semantics for UML Activity Diagrams,” Egon Borger et
al., Springer-Verlag Berlin Heidelberg, June 2000

1033 “Modeling Systems With UML,” A Popkin Software White Paper,
1998

1034 “UML Notation Guide, Version 1.1,” September 1, 1997

1035 “Mole – A Java Based Mobile Agent System,” Markus Straßer et
al., Proceedings of the 2nd ECOOP Workshop on Mobile Object
Systems, 1996

 -4-

CLI-2084525

1036 “Saving Portable Computer Battery Power through Remote Process
Execution,” Alexey Rudenko et al., Mobile Computing and
Communications Review, Volume 2, Number 1, January 1998

1037 “Better Template Error Messages,” Andrei Alexandrescu, March
1999, available at
http://erdani.com/publications/better_template_error_messages.html

1038 “CAP: An Automated Self-Assessment Tool to Check Pascal
Programs for Syntax, Logic, and Style Errors,” SIGCSE '95
Proceedings of the Twenty-Sixth SIGCSE Technical Symposium
on Computer Science Education, 1995

1039 “Automatic Correction of Syntax Errors in Programming
Languages,” Jean-Pierre Levy, Cornell University, Thesis,
December 1971

1040 “IEEE 100, The Authoritative Dictionary of IEEE Standards
Terms,” Seventh Edition, IEEE Press, 2000

