a2 United States Patent

Hiew et al.

US007110936B2

US 7,110,936 B2
Sep. 19, 2006

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR GENERATING
AND MAINTAINING SOFTWARE CODE

(75) Inventors: Fen Hiew, Mendota Heights, MN (US);
Edwin M. Schroeder, Chicago, IL.
(Us)

(73) Assignee: Complementsoft LL.C, Chicago, 1L
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 923 days.

(21) Appl. No.: 09/992,624

(22) Filed: Nov. 19, 2001

(65) Prior Publication Data
US 2005/0229154 Al Oct. 13, 2005

Related U.S. Application Data

(60) Provisional application No. 60/270,950, filed on Feb.
23, 2001, provisional application No. 60/293,854,
filed on May 25, 2001.

(51) Imt.CL
GO6F 9/45 (2006.01)
(52) US.CL .. 703/22; 703/26; 717/100;
717/108; 717/134;717/135
(58) Field of Classification Search 703/22;

717/108, 100, 134, 135; 345/700
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,187,788 A
5,485,615 A

2/1993 Marmelstein
1/1996 Wennmyr

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1001338 A2 5/2000

(Continued)
OTHER PUBLICATIONS

“Language Independent Generation of graphical Representations of
Source Code”, Hendrix et al, ACM 0-89791-737-5, ACM 1995.*

(Continued)

Primary Examiner—Fred Ferris
(74) Attorney, Agent, or Firm—Gary R. Jarosik

(57) ABSTRACT

A system and method for intelligently generating computer
code. The system being comprised of a local computer,
which is connected to a remote computer via a network
system or the Internet and which is capable of exchanging
files with the remote computer. The local computer is further
comprised of a document manager for transferring files
between the local computer and the remote computer and for
providing enhanced file management functions. The docu-
ment manager works in connection with the server module,
the site manager and the connectivity layer to connect to
remote computers, to transparently exchange files with the
remote computer and to manage server profiles and connec-
tion information that is related to remote computers and
transferred files. Once the file is transferred to the local
computer, the editor can modify the code associated with the
file; the editor is also capable of creating new files. The
visualizer is capable of displaying a program flow diagram
and a data flow diagram, which are comprised of program
flow icons and data flow arrows to depict the code in terms
of processing blocks and data blocks. To assist in developing
new code or editing existing code, the template manager
allows the user to browse through a directory of existing
code sections or templates and to copy templates into the
selected code for editing. For allowing the editor to process
code that is written in different Data Management System
programming languages and for creating the program flow
icons, the parser layer detects the file type of a selected file
and activates the rules and logic that apply to the corre-
sponding Data Management System.

16 Claims, 42 Drawing Sheets

‘complementSoft ASAP
Aschitecture Overview

60 80

120 \Local Computer g, 220 70

{ \)
] A \ 7) I
L=][= = J[= J[=][== |

=)= =] [=1=]

=
== [~ = | [==][=]

[Java Virtual Machine

| Operating Systems

US 7,110,936 B2
Page 2

U.S. PATENT DOCUMENTS

5,652,899 A 7/1997 Mays et al.

5,937,190 A * 8/1999 Gregory et al. 717/131

6,243,703 B1* 6/2001 Couch et al. 707/10

6,311,323 Bl 10/2001 Shulman et al.

6,356,285 B1* 3/2002 Burkwald et al. 715/853

6,604,110 Bl 8/2003 Savage et al.

6,851,107 B1* 2/2005 Coad et al. 717/108
2001/0049682 Al* 12/2001 Vincent et al. 707/100
2002/0059003 Al* 5/2002 Ruth etal.ceeenennnnn 700/19

2002/0097253 Al*
2002/0112225 Al1*
2002/0116702 Al1*
2003/0041314 Al*
2003/0056192 Al*
2003/0061600 Al*

7/2002 Charisius et al.
8/2002 Charisius et al.
8/2002 Aptus et al.
2/2003 Heeren et al. .

3/2003 Burgess ...

3/2003 Bates et al. 717/133

FOREIGN PATENT DOCUMENTS

WO WO 97/40443 Al
WO WO 01/08007 Al

OTHER PUBLICATIONS

“GENOA-A Customizable, Frount-End-Retargetable Source Code
Analysis Framework”, Devanbu, ACM Transactions on Software
Engineering, vol. 8, No. 2, Apr. 1999.*

10/1997
2/2001

“Visualizing th Performance of Higher-Order Programs”, Waddell
et al., ACM 1-58133-055-04/98/0006, 1996 ACM.*

“Using a Fine-Grained Comparative Evaluation Technique to
Understand and Design Software Visualization Tools”, Mulholland,
Seventh workshop on Empirical studies of programmers, ACM
1997.*

“An Analysis of Geometric Modeling in Database Systems”,
Kemper et al, ACM Computing Surveys, vol. 19, No. 1, Mar. 1987 .*
Togethersoft Corporation, Together Documentation Set Version 4.2,
Dec. 21, 2000, pp. 1-257.

Benedusi, P. et al., A Reverse Engineering Methodology to Recon-
struct Hiearchical Data Flow Diagrams for Software Maintenance,
Oct. 16-19, 1989, pp. 180-189.

SAS Institute, SAS Companion for the Microsoft Windows Envi-
ronment, Using the Enhanced Editor, Sep. 1999.

SAS Institute, Bibliographic and copyright information, SAS
onlinedoc, version 8, Sep. 1999, lpage.

Anonymous, Togethersoft Ships Together Control Center 4.2, Latest
Business Process Automation Software Speeds Development Time
for E-Business Apps, Dec. 21, 2000, 2 pages.

SAS e-intelligence, Know Your Customers, SAS Institute Inc.,
2001.

* cited by examiner

U.S. Patent Sep. 19, 2006 Sheet 1 of 42 US 7,110,936 B2

[

Display 22b

Local Computer

1T~

Video Central Processing Network —l
Adapter Unit Interface
L} L4

J

A
Y

Serial Port /
USB / Network
Interface

Memory
Storage Device

Modem / Router / Network Hub

Internet / LAN / WAN

22a

Data Files

File System /
Data Files
File System /

Remote Computer Remote Computer

FIG. 1

US 7,110,936 B2

Sheet 2 of 42

Sep. 19, 2006

U.S. Patent

¢ Old

swialsAg buneladp

sulyoe\ |enMIA eAer

r——— -
| wesreg !
SONAOG JOARS SN0] oioeds ebenbuen _
| L opl
| 208
809|AI05 26%8) E_auw_%ﬂo: | |uedng Joased “ Oo —. ww
A L ————Z2 4 \
oo canos s o o 2 e
e | soomes wemis ony
sojioid SWEQ SB0JANRS JPUeL w013 wesBog sobeuey epdway wegsig Bunesedo
obpug oones BMOIA MO ©MIA JOWN0g SO0jAS WeIBAS 6114
sejynid oS 5800/ o8ar UORENWT [eUjULB), sefeuepy wewnooq
sobeven ops saBevepy sseqeeg sneg sazyensip sonpg seBeueyy wownooq
/ { / \ \ \
! I ozt 08 ,
0L 0ze Jaindwon [eoo7] 09
MIIAIDAD BINRAYIIY
dVSY yogiuawajdwos

U.S. Patent Sep. 19, 2006 Sheet 3 of 42 US 7,110,936 B2

gcnmplemenﬁoh ASAP Version 2.0
I Fue Edit Search Options Hetp

| a.a%@l%@Inuh‘%@[“@ﬁD|>&Ia
Document
Manager

n
Editor

Visualizer

E
Server

&
P21
Database
Manager

.

Site
Manager it
New Document l \

File{s) cpened \
]
48 ()

80 FIG. 3

U.S. Patent Sep. 19, 2006 Sheet 4 of 42 US 7,110,936 B2

& complementSaoft ASAP Version 2.0 A [=] B3
]] File | Edit Search Qptions Help

3 New aN (o f B @mIABDEEODI»>N] 9 I
2 open... Ciri+0

Close \

Close All Files \
& save ctivs 44

SaveAs... F12

Compare Files...

Sort

Page Setup...
Print Preview
Print

Exit

Crl+X

Server

- w
Database
Manager

&

=
Site

Manager |g
New Ducumentl

1

. File(s) opened
f .

48 46
Menu [tem nctionality

New Create a new document (a program)

Open Open an existing document

Close Close the currently opened document

Save Save the currently open document

Save As Save the currently open document using a different name or in a different location
Print Preview Print Preview of the currently open (active) document

Print Print the currently open (active) document

Exit Exit the application

FIG. 4a

U.S. Patent Sep. 19, 2006 Sheet 5 of 42 US 7,110,936 B2

42

© complementSoft ASAP Version 2.0
I Eie Bearch Options Help

I B | = undo cmez cdBAIABERNRI>¥]Ie
 Redo Ciri+ShifteZ
& Cut CtrisX ‘\
Ba Copy Cirl+C
[@ Paste Ctrisv 44

Editor

Visualizer

Server

[}
Datakase
Manager

Site
Manager

New Documentl . \

) File(s) opened N\ hd
T 1
48 46
Menu Item Functionality
Undo
Redo
Cut

Copy

Paste

FIG. 4b

U.S. Patent Sep. 19, 2006 Sheet 6 of 42 US 7,110,936 B2

/42

g complemeniSoft ASAP Version 2.0 [_]D]x]
|| File Edit | Search| Options Help
| Besd #nd oieF |Bn @ M @IEF M| > Xl o |
Replace Cti+R \
_E@ Find Next F3
b == " Replace Next F4 k
acumen
GotoLine Cirl+G 44
Manager =~
Visualizer
Server
TV
Database
Manager
Site
Manager |g
New Document
File(s) onened -

Menu Item Functionality
Find
Replace

Find Next
Replace Next
Goto Line Go to the n line in the currently active document

FIG. 4c

U.S. Patent Sep. 19, 2006 Sheet 7 of 42 US 7,110,936 B2

/42

© complementSuit ASAP Version 2.0 M= K

I Eile Edit Search | Options| Help
I B S & | & DocumentManagerConfiguraion pg i= MM | > W | @ ~

L
sl

Document
Manager

. |
Editor

Visualizer

Zl
Server

%
Database
Manager

Site
Manager

Editor Configurati \
Code visual Canfigurati
1 Connettion Configuration \
Network File Configuration 44
New Documentl \
-

File(s) opened \

v
46

Menu ltem Functionality

Document Activate the Document Manager Configurator
Manager

Configuration

Editor Activate the Editor Configurator

Configuration

Visual Activate the Visual Configurator
Configuration

Connection Activate the Connection Configurator
Configuration

Network File Activate the Network File Configurator
Configuration

FIG. 4d

U.S. Patent Sep. 19, 2006 Sheet 8 of 42 US 7,110,936 B2

@Document Manager Configuration | X|
General I

Select the drive(s) to open in the local panel.
Local Drives:

Al

Cl

DA

EX

oK | Cancel

FIG. 4da

U.S. Patent Sep. 19, 2006 Sheet 9 of 42 US 7,110,936 B2

@ E ditor Configuration [x|

4

84a 84b 84c 84d

[] Use external Editor
External Editor: _I FI/

[Disable line numbeting

[Print header information (Date File name Page number)
[Printline numbers

1 Printwrapped text

Reset | OKJ Cancel
FIG. 4db

U.S. Patent Sep. 19, 2006 Sheet 10 of 42 US 7,110,936 B2

@ Site Manager Configuration E{

(* Noproxies { Firewall with no proxies

" Use proxies ¢ No network detection

[J Enable HTTP proxy
~HTTP Proxy

Server I

Serner
IBEI
Name Port

[J Enable SOCKS proxy

~SOCKS Proxy
Server Server
|1 080
Name Port
= Verd

User Name:
[J Authentication

 Vers Password:

Test I OK | Cancel | Apply |
FIG. 4dc

U.S. Patent Sep. 19, 2006 Sheet 11 of 42 US 7,110,936 B2

@Nelwork File Configuration [X]

[Enable Netwaork File location for Site Managet

Path: __'

[0 Enable Network File location for Message Manager

Path: _|

Precedence:; (¢ Localfile ¢ Networkfile

[T Enable Network File location for Templates

Path: | |

OK I Cancel |

FIG. 4dd

U.S. Patent Sep. 19, 2006 Sheet 12 of 42 US 7,110,936 B2

{42

gcumplemenlSull ASAP Version 2.0 M= E3
|| File Edit Search Options | Help
| B & | &R |« OnlineDocumentation M| ¥ - I
Product n
[-—“:93 Codel License \
1 Registration \
Decument
Manager Purchase 44
Download Updates
. Send complementSoft SuppartFiles
Editor Anoul ASAP

Visualizer

Server
3
(']
Database
Manager

Site
Manager |g
New Document

file(s) opened >
|
48 46
Menu Item Functionality .
On-line Show On-line Documentation
Documentation
Product Support | Displays the Product Support Page with e-mail address, How to . . . and Frequently Asked
Questions
License Detailed license information with the ability to renew and/or upgrade the license
Registration Perform on-line product registration
Purchase Displays the complementSoft e-store
Download Retrieve Product Updates
Updates
Send E-mail support files to complementSoft
complementsoft
Support files
About ASAP Version and copyright information

FIG. 4e

U.S. Patent

Sep. 19, 2006

Sheet 13 of 42

US 7,110,936 B2

gcomplementSoll ASAP Version 2.0 5[] B
I Fie Edit Search Options Help
| B 9ISRIv - t\BA HEzDDI>%]0 |
Cods | \
H 42 P
Document
Manager 44
Editor
E = Redo
visualizer & out
Ba Copy
_ (& Paste
?I #4 Find
Server Find Next
Replace
,:, Replace Mext
L)
Database % Close
Manager §:= Line numbering
£ Tree split
T} Temptates
Edit Properties
a > Execute program
e @ Toggle Break Points
Site Message Manager
Manager ———————————
NstocumenlI \
\ File(s) opened -

48

\

46

FIG. 4f

U.S. Patent Sep. 19, 2006 Sheet 14 of 42 US 7,110,936 B2

Menu Item [Functionality
Undo

Redo

Cut

Copy
Paste
Find

Find Next
Replace

Replace Next

Close Close the currently active document

Line numbering | Tum line numbering on of off

Tree Split Activate the Tree View split screen mode
Template Activate the Template Manager

Manager
Edit Properties Edit the properties (timestamp, originating location, etc.) of the document

Execute Program | Execute the currently active program (i.e., the one that the user is currently editing)

The user can further specify the execution mode (i.e., how to execute, with which option turn
on/off, etc) and execution location (i.e., where to execute, which server, which execution
engine, which location)

If the user has previously activated Break-Point execution (see below), then the execution
will be carried out based out the break-points, i.e., start at where the user indicate that it
should start, end at where the user indicate that it should end and skipping statements as
indicated by the user.

Toggle Break Activate / deactivate Break-Point execution.
Points Setup Break-Points if they have not been previously setup.
Reset/Remove Break-Points if they have been previously setup
Message Activate the Message Manager to add, remove, or update the messages in the message
Manager repository

F'G. 4f (continued)

U.S. Patent Sep. 19, 2006 Sheet 15 of 42 US 7,110,936 B2

44

/

lF2ol8RIveo s 2@ fmiEEIM| » %] 9

New

Open

Save

Print

Print Preview
Undo

Redo

Cut

Copy

Paste
Find Find a word
Refresh Refresh the Editor display

Toggle Line Show or hide line numbers
Numbers
Toggle Tree View | Enable or disable Tree View

Template Activate the Template manager
Manager
Execute Program | Execute the currently active program

Close Close the currently active program

Toggle Break Enable of disable Break Point Execution

Point Execution
FIG. 5

US 7,110,936 B2

Sheet 16 of 42

Sep. 19, 2006

U.S. Patent

0

9 Old

Ppauada (Sjend

ses'g gjdwexgisejdwexgyogiuawsdwonylvava [ses g aidwexsise|dwexawosiuawaid

/= TYNNOL OL QIAAVY VIVA THOW «/

00°0S6
T0 00T
00°00¢
TE"8LS
8r oLz
SQYI
¢ LALVE ZLY] VIO
‘P, L4832qT10, =ALYq
SEdAL LNNOHY dI LNdNL

- O -y

‘R
9L
6820
£000
vzo0
vZoo

fZAYA0L MiIva

¢ Q3AqY SNOLLOVSHWIL LSYIJd YALIV HILSVH, FILIL
S TUREN0L=RI¥A INIUd
$IYNUN0C=3SYE ANRIdY

ogad
otad

/s IVININOL OINI YIVA LSUIL o/

00°s
08°662

0001
05-002
Lzoosy
ISQUYD
£ LALYE ZLYA LVRNOA
‘P LBIIAT0, =3LYA
¢3dAL LNOOHY QI 10dNI
SAYA0L

- N

g// e WPIO09d ISAL GHIAY D0Ud----=--mo-=cun

‘Rl
00L0
S¥00
»200
2000
1000

iea

[y Ty P P P PP T P TR P PP T P RO PPOr PPy

\ _

lafeuen
alsg

JaBeueny
aseqeyeq

Iz

PEHI-LTTTY

AeBeuey
wawndog

daH suopdd yaea wp3 and
0°Z UOISIBA dYSY Hosiuawajdwod Ty

~-agy

eyl [44

U.S. Patent

42

Sep. 19, 2006 Sheet 17 of 42

US 7,110,936 B2

Document
Manager

Editor

YVisualizer

Server
3
L
Database
Manager

5

Site
Manager

mplementSolt ASAP Version 2.0 | _ (O] x|

Flle Edit Search Options Help

| REQ I BR|lwo B MAEIEDEI> %o ‘ |

CodaJ ou:pml LC'DI

44

JE AT T SR R R R R R C A T T AR TR AR R AT A AT RA RN RN NN R NI RAERRSR al

DATR

0001
0002
00z4
0045
0700
RUN;

/* FIRST DATA INTO JOURNAL */

PROC
PROC

DITZ

0024
0024
aoon7
0289
5762
RUN;

/* HORE DATA ADDEP TO JOURMAL */

------------- PROC APPEKD TEST PROGRAM 3

TODAY;
INPUT ID AHOUNT TYPE;
DATE='01DEC87'd;
FORMAT DATE DATE7?.:
CARDS:
450.27
200.50
10.00
299.80
5.00

NN

APPEND BASE=JOURNAL:
PRINT DATA=JOURKAL:
TITLE 'HASTER AFTER FIRST TRANSACTIONS ADDED';

TODAY2:
INPUT ID AMOUNT TYPE:
DATE='0QlDEC87'd:
FORMAT DATE DATE?.:
CARDS;
270.48
578.31
300.080
100.01
950.00

N

File(s) opened

FIG. 7 Neo ez

US 7,110,936 B2

Sheet 18 of 42

Sep. 19, 2006

U.S. Patent

o, 00t 8 Old 40
L \]

elLolL 90l
\

AN B I

) ,

{<3dA23=4dALRLINT /> (§)&13U2 FAYS
7 (QUARI=FIALALING />

(<<, >u012drI983p-A12U <, >>=NOILITHISI])
A23u9 AITAOR

£ <adA3=FdALKYING />

(s)Axaus FLATAQ

#<adi13=FJALAIINT />
U-3TWRU-IIMNO=U-3WRU" " ">
T=-3WBU-1aYI 0=T~-3WBU FONVHIXI
{<adA23=2JALAMING />
{U-3WRU-NU=U-3WBU-PTO* * * >»
T-9WBU-A3U=T-3WBU-PTO FAINVHI

1<9dA22=2dALXMINT /> (£)AI3ua IANTIXT
1<3dA33=FJALXLING /> (8)AT3U3 IDFTAS {<EU0TAA0> HOTEIBOC IIAATIH>=1N0 Ad0I
2<FIXITTI=TMI> <IIS-BIEP-SYS=100> SINALNOD
ICTIIN> <FIY0I> <2dEa3=FJALRMINI> BOTwawd< J91qTT>=00TVIY) 90TYLYD J0ud
/s H0OTBIBD B UTYITA £3TIUI BT3P I0 ‘3bueyoxs ‘awsuaxr -~
HOTRIBD B UTYITH 63LIUS Paaoaras 10 Horeaed v Adoo -
HoTeaBd B JO £IUIIU0D Iyx ABTASTIP -
03 NoA SMOTTR 9°yl 2aInpadoxd IATAIBISAUT UB ST ANTVIVI J0dd =/
/¢ *sBOTEABD S¥YS UT §3TIIUL s3Beuem axnpaosoxd H0TeIB) UL o/

—\
_.H!_J‘ﬂ\mu‘_:ommﬁo FN: —ﬁ

X

sjesejeq [
yodd {1
dsanond ﬂi
HOO ﬂ;
Adoo ﬂ
HaAuc) ﬂ!
SJUBIUGD ﬂ.xx
gendwo)d m
aledwo) ﬂ,
3snD m,
uoduio {7}
ueys [}
pounes -
J5IpURD ﬂx..
103uBD ﬂr.
sieo [} |
iepuaed [} |
10)dx0g ﬁ
dawa [}

[fAasopny ﬂ
euly ﬂ
puaddy ﬂ
BADUY ﬂ
snjasdy ﬂ
044 _H_...m_
suonaung (-8
sjewou} HM-@\.
fewso]

[~ siuaws|g sbenfiue sys —Um

i

I Jouomien [«

sjuawal3 abenbue sys I | 1eao

disFl w3 &g |

sae|dwo |

Vol

~SG0

U.S. Patent Sep. 19, 2006 Sheet 19 of 42 US 7,110,936 B2

B complementSoft ASAP Version 2.0
|| F#e Edit Search oOptions Help

| P SR MBI NEDFEI (> «r o |

ol -0 — -0 8
-
Manager smpl.smpl_1 SORT _NULL_ smpl.smpl_.
Editor ‘.‘
126 (o «—@B—@— ("
Print SideSida ConCat SORT

Visualizer \
. 126 \
" 122

Server

T
Ly
Database
Manager

Site
Manager

FIG.9 120

U.S. Patent Sep. 19, 2006 Sheet 20 of 42

US 7,110,936 B2

@Cumplemnnlﬁolt ASAP Version 2.0 |_ ol x]
Il Eile Edit Search Options Help
| ¥% R&Iai 6] |
ServerA SENBI'BI
R
FF /datal fcomplementso £t _:]]
Document
Manager
Editor
Visualizer
Server
L3
TV
Database
Manager
Site
Manager |id 1 L
Connected to 192.166.1 .4 teinet onling
11-14-01)07:56 PM complementSoft ASAP Versionf'z.u build number 02.00.00.01 A

(\
4 %2 FIG. 10

U.S. Patent Sep. 19, 2006

Sheet 21 of 42

170

g complementS oft ASAH Veision 2.0
| Ele Edit Search Opfions Help

| S8 ols GG

Local |

Document
Manager

Editor

B All Hosts

BD Home Hosts

S 74a
- Elguvs

3 “ SenverA

“ ServerB

;
&) Anonymous FTP Sites

\

174

Yisualizer

|

Server

172

v
oy
Datakase
Manager

178

[

176

\

Site VA

US 7,110,936 B2

Profila Narme: ya 78a

[romplementsoft ~

Host Address: /78b ‘
[z7.00.4 -

User: / 780) /
Jroot

Password: / 78d I (/
=== AM

FTP Server Type:
Unix

Telnet Part

78f

Kanager

[

lNew I Eldit '/Sava I Remove ' Options l ConnectFTP I Connect Telnet I
1 i —

- 78e
F11'P Part

Izs——\—'

¥ Use PASV Made
I~ Use Firewsalt

I~ Keep Alive

[~ Detailed FTP log

11-1401 07:56 PM mm\)leme!ﬂSoﬂ ASAP Version 2.0 build’numher 02.00.00.01

| -

1
74 7;

]
76

FIG. 11

70

U.S. Patent Sep. 19, 2006

Sheet 22 of 42

US 7,110,936 B2

i
I

File Edit Search Options Help

B GEG Y LT 80|

| Local | | Remote
Dacument
Manager ng'“’“s:m""‘ datad
o datal
Z Examplei.sas Examplet.sas
Example2 sas
= Example2.sas
] i Exarmple3.sas
Editor i3 Exampled.sas
14 Exampleb.sas &
Program Group B
=
Visualizer
Server
[
Database
Manager
70
" Site .
Manager X = £
E D:\I \ ServerAISelVefBI

11-15-01)09:40 AM Connected to Server B/

{ (
48 172

FIG. 12

)
174

2

60

U.S. Patent Sep. 19, 2006 Sheet 23 of 42 US 7,110,936 B2

@ Search | X}
Look in: M complementSoft Program Files

__ljre - Find
__| UninstallerData
ASAP_70-01-01u.exe
ASAP_Update_InstallLog.xmi
complementsas.jar V' ignore case
ComplementSoft ASAP.exe
ComplementSoft ASAP.ico
ComplementSoft ASAP lax
ComplementSoft_ASAP_InstallLog.xml
ComplementSoft_SAS.exe

I

Name I Datel Contentl Foundl

lcontains - l

crimsonljér -
jaxp jar
%) JGo jar Start Stop
g - ™
File name: | Search
Files of type: IAII Files (*® /) ;I Cancel

{
69a

\
FIG.13 e

U.S. Patent Sep. 19, 2006 Sheet 24 of 42 US 7,110,936 B2

(¥ complementSaft ASAP Yersion 1.8

ile Edit Search | Qptions| Help

:tﬁ " & . 2B DocumentManager Configuration
Editof Genfiguration 4

E Visual Configuration N
Cannection Configuration

213 .23

poft\library' : \86

Document
Manager

Data smpl.smpl_1:
infile 'd:\data\complementsoftidatalsmpl_l.txt';
41gnic strecoll § strcol2 § mbrcol:

!l Proc SORT out = smpl.smpl 1:
T by strcoll;
Editor o

Data _NULL_:
set smpl.smpl_1:
file ‘d:\data\complementsoft\catajsmpl 2.txt';
put strcoll strcol?;

Vlsu,all:gr bata smpl.smpl_2;
infile 'd:\data\complementscteldata\smpl 2.txt';
L1t strcoll § strcel2 §;

.ﬂ . Proc SORT out = sapl.smpl 2;
Server by strcoll;

Data ConCat:
set smpl.smpl_1 smpl.smpl 22
file 'd:\datalcomplementsoftidataismpl 3.txt';
Databas¢’ 717 strcoll strcol2 nbrcol:
Manager Pata SideSide;
merge sopl.smpl 1 smpl.smpl 2;
by strcoll;
file 'd:idatascomplementgoftidatassmpl 4.txc’;
)¢ 3trcoll nbreol:

EZ! Proc Print;

“7““ Title 'Two Semple SA3 Data Sets Side by Side':
Bita Run; \
Manager
. CaDatalcomplementSofl Test Suite\ExamplesiExample 5.sas l \
10-24-01)09:10 PM Local execution completed I hd

\82

FIG. 14a z\ao

U.S. Patent Sep. 19, 2006 Sheet 25 of 42

US 7,110,936 B2

g E ditor Configuration

Generall Fonts “C‘Jlﬂfl Executel

\

84b

File typea: ISAS Program File

Screen element:

-~

Cammantt

Comment2

Literal1

Literal2

Label e
Keyword1

Keyword2

Keyword3 -

Praview

PROC APPEND BASE=J0OURNAL;
PROC FRINT DATA=JOURNAL:
TITLE "SAS Sample program™;

b O0 IO 0 B WY =

DATA TODAYZ;

TITLE2 '(VALUES SHOULD BE CORRECT, HOVEVER) :

I»

Reset |

N

oK | Cancel

FIG. 14b

N
84

U.S. Patent Sep. 19, 2006 Sheet 26 of 42 US 7,110,936 B2

@ Editor Configuration E3

E | Fomsl Colorl Executel

84a 84b 84c 84d

[Use external Editor
External Editor: __l

410 — 1 Disable line numbering

[Print header information {Date File name Page number)
] Printline numbers

[Print wrapped text

Reset l ' OK Cancel
FIG. 14c

U.S. Patent Sep. 19, 2006 Sheet 27 of 42 US 7,110,936 B2

rExecution MOdu\\
84b 84c

[J N Observations Observations 0

[Expand Macros (MPRINT)

rExecution Location

Execution Path

[Local Program Files\SAS Institule\SASWBISAS. exe I
Remote

Don't show option dialog before execution.

Reset I | | oK Cancel
FIG. 14d

U.S. Patent Sep. 19, 2006 Sheet 28 of 42 US 7,110,936 B2

Font Name: ICourier New ;I Size: |12 j Style: IPIain "l

Preview

1
2
3 PROC APPEND BASE=JOURNAL:

4 PROC PRINT DATA=JOURNAL;

5 TITLE "S5AS Sample program”™;
6 TITLEZ '({VALUES SHOULD BE CORRECT, HOWEVER) ;
2

8

9

DATA TODAYZ;
INPUT ID AMOUNT TYPE:
10 DATE='0lDEC87'd:
1l FORMAT DATE DATE?.:
12 CaRDS:;
13 LOOP:
14 0024 270.48
15 0024 578.31
16 0007 300.00
17 0289 100.01
18 5762 950.00

- b

20 IF VPT_MER > O THEN
21 VPC_MER = VHA_MER / VPT MER * 100; v

Reset | | OK Cancel
FIG. 14e

US 7,110,936 B2

Sheet 29 of 42

Sep. 19, 2006

U.S. Patent

00t Gl old o Lol

1 3
\ _.)I_|.&mc_Ecc // ”

wsn) T
uocdwi) [}
pounes [}
fojejesn m._

asipue) [|-
uowed -

silen _.H ;

sepusled [4 |~

101txog ﬂ

\ Jawa m H

q Fc —\ falony m e
. ey ml -

g

puaddy [|-

BAOUY m.
snpaaay [-

suoipund I

801

901

sleuuo| [—-

sjuawa|3 .mmm:mcm._ ays

T & [« swawsi3ebenfue sy |

disl wp3 &g ||
muum_nEuh@

SOl

U.S. Patent Sep. 19, 2006 Sheet 30 of 42 US 7,110,936 B2

gTemplates . !EB

I Eile Edit Help

|__sweb Templates ~ & &

< {Web Templates
i+ _JUniversities
- {SAS Web Template Name: [On-Line Samples
- I

On-Line Sam..
L} samples Fro...

htto:# | http:/rwww.sas.comiservice/ibrary/onfinedoc/code. samples himi

- |

108

101b
/

Edit I Save I

)]
101a)

101 FIG. 16 100

U.S. Patent

Sep. 19, 2006

Sheet 31 of 42

124b 122b
!]

US 7,110,936 B2

& complementSoft ASAP Version 1.0
| Fite Edit Search Options Help

HEeo SRS 2RBIHNED

g |4 P 4P @

i

Document
Manager

|
Editor

Visualizer

Server

-

-..l-
-k
Database
Manager
ot
1 O
Manager

smpl_1..t'ta smpl.s...

smpl.smpl_1

smpl.smpl_1 o smp...

smpl_2:bd'to smpl.s...

smpl.smpl 2

alsmpl_1.bd"

¢

7‘{\

.

smplsmpl_1

smpl.smplL1

ol
1%
SORT

smpl.smp_1

126

smpl.empi_1

£]126

o)

NULL,

zalsmpl_2.0d

1 D

atsmpl_2.bd'

.

smpl.smpl_2

smpl. smpl 2
A7
Vi
SORT

smpl.smpl_2

:

File(s) opened \

124

\

FIG. 17

124a

?

120

U.S. Patent Sep. 19, 2006 Sheet 32 of 42 US 7,110,936 B2

124b 122b
{]

g complementSoft ASAP Version 2.0 |_{DIX]
I Eile Edit Search Optiens Heip

| ME2S ISR 2RBIABDEITEEI «»r «» @

_. smpl_1.0d"to sm.. smpl.smpl_1 smpl.smpl_1 1o ...| smpl_2.bd'to sm.. smpl.smpi_2 smpl.smpl_1 to smpl_3.xt'
=

Dacument

e = @ @ & 86 80 86

_alsmpl_1.t¢" smpl.smpl_1 smpl.smpl_1 .awsmpl_2.bd smpl.smpl_2 smpl.smpl_1 smpl.smpi_2
’ sel

Editor

SORT SORT
¥isualizer
7| smpl.smpl_1 smpl.smpl_2

Server smpl.smpl_1 _NULL_ smpl.smpl_2 ConCat

o

g
Database
Manager

e —

awsmpl_2.6t" .alsmpl_3.ut

Site /
Manager / /
4]

/ / File(s) opened

121 124 k120

FIG. 18a

U.S. Patent Sep. 19, 2006 Sheet 33 of 42 US 7,110,936 B2

124b 122b
[]

B complementSoft ASAP Version 2.0
|| FEile Edit Search oOptions Help

_- smpl_1.5d't6 smpl.smpl_1 smpl.smpl_1 to smpl_4.54" SideSide
Document \ﬁ . . .
Manager awsmpl_t.bd' smpl.smpl_t smplsmpi_2 SideSide
Editor
nerg
Print
1
Visualizer smpl.smpl_1
Ist
El SideSide
Server / 1 24
N
Database
Manager
smpl.smpl_1 atsmpl_4.dt’
Site set
Manager
| -]
/ File(s) opened hd

{ 4
48 121 ~~120

FIG. 18b

U.S. Patent Sep. 19, 2006 Sheet 34 of 42 US 7,110,936 B2

124b 122a

l B complementSolt ASAP Version 2.0
| Fite Edit Search Qptions Help

| RSO IGR| 4 2BRINBOFPEICr «r o |

_ smpl_1.d to SideSide
Document
Manager

. smpl.smpl_2
Editor

set nerg
Yisualizer

Server
ConCat SideSide
L)

s ¥
Database
Manager

Print

l

Site
Manager

.asmpl_3.bd" ._alsmpl_4.td"

/ File(s) opened v

1217 120
FIG. 18c

US 7,110,936 B2

Sheet 35 of 42

Sep. 19, 2006

U.S. Patent

iz H—O— 8

61 Old

0zl oLzl 8y
/ /.)

) pausao (S)spd o .
- a . F :
:Z 7dus s{dus = Ano J¥pg Joad JaBeueqy
{3 2700136 8 TT02138 Indut 25
£,3%3°2 TWS\PIDP1II0CIUSTTMO 4 BABP Y :P, STTIUT ‘i..

£2 1dus - Tduc eyeq _.U.m_.

_ #ZT792138 1102135 and
213x3 77 Tdws\Pavp\ 313053 UITITANOI\RIBR I, aTTI
(1 1dus *tdus 08

TN ejeq

JaBeuepy

21109138 Ao
ual._.nsm.._.nan = 3ne JH0§ doag aseqeieq

fT002qu 3 2103135 & [T02Ias Andur
saxaet qnan/opou,uuonucoauﬂnsou/ounu., P, SITIUEL
277 1dus dus eyeq

- ¢ (ATeaqIT\3oFIuINS [duoo\vaep\ :p, TdUs DHRILT

ON F (/ 1408 182U00 apigenis Wud

NN —\ “jdwsjdws TTINNT

19Beueiy
wawnosoeg

® 4B) IBALHEEB W DI IS R [
dieH suopdG qaess wpg o7 ||
0 uois13p dysy Yogawajdwos T

US 7,110,936 B2

Sheet 36 of 42

Sep. 19, 2006

U.S. Patent

gL

alel

aclh

oct ON .mv_n— L 1%
IVI . J (

pauado (s)aiy

-
< 1 10°00T 6820 0§
z 00°00€ LOOD 6 deBeueyy
1 1£°8L5 ¥Z00 8b s
1 8¥°0LZ Y200 Lb
15@aYD ot
{1L5IvQ TLVA LYWIOL 12
P, 1823AT0, =ALYA vh
!FIAL INAOKY QT LOdNT £
!ZAYGOL WING Zb
™
?,Q2Qq¥ SHOLLOVSNVML LSWId MALIY WALSYH, TLLIL oy 15Beuewy
- XTTVNNOL=UL INTNd D08 _6¢
|wndino | 607 _ YRy | seaEed
a2
BE I &

19A138
F:
ozL 92 .

j \ E_m.%

AN €AVQOL AN3ddv INIEd
.
& — @

- 10)1p3
QN3ddvY TAYQOL ._,;Z_w_n_ ON3dd¥ AYQOL 1aBeuety
Fe— B [

.mmuu

\

®um» () RAEZEB W T e &6 |
dieH suondd ymesS wp3 oNF |
Q<N :Umu_ﬁ> &{W-(——D“-EQEW—QEQU m

\

‘apoo onewa]qord
wejuod Aay) usym
pa1 ur eadde sjuswary

U.S. Patent Sep. 19, 2006 Sheet 37 of 42 US 7,110,936 B2

gl_‘.ode & Log _ (O] x|

39 PROC PRINT DATA=JQURNALIX: 4
40 TITLE 'MASTER- AFTER FIRST TRANSACTIONS ADDED': '

41

42 DRATR TODAYZ:

43 INPUT ID AMOUNT TYPE;

44 DATE='01DEC87'd; _]
45 FORMAT DATE DATE7?.:

46 CARDS ;

47 0024 270.48 1
48 0024 578.31 1

AR 2009 200 00 A

38 PROC APPEND BASE=J0OURNAL:

Dl

NOTE: Appending WORK.TODAY to WORK.JOURNMAL.
NOTE: BASE data set does not exist. DATA file is being copied to BASE file.
02 The SAS System 08:22 Friday,

NOTE: There were 5 observations read from the dataset WORK.TODAY.
NOTE: The data set WORK.JOURNAL has 5 observations and 4 variables.
NOTE: PROCEDURE APPEND used:

real time 2.14 seconds
39 PROC PRINT DATA-JOURNALLx:;
ERROR: File WORK.JOURMAL1X.DATA does not exisct. hd
4l 1 4|

FIG. 20a

U.S. Patent Sep. 19, 2006 Sheet 38 of 42 US 7,110,936 B2

%23, Debugging Hints . [X]

ERROR: File *.%*.* does not exist.

Suggested Action:

1) Make sure that the dataset name is spelled correctly
2) Hake sure that the libref is spelled correctly

3) Call Samantha

OK I Cancel I

FIG. 20b

U.S. Patent Sep. 19, 2006 Sheet 39 of 42 US 7,110,936 B2

@Message LEVEDL Eq

Messages List:

ERROR: File *.*.* does not exist.

Error Message:

ERROR: File *.%,% does not exist.

Hint;
1) Make sure that the dataset name is spelled correctly _Aj

2) Nake sure that the libref is spelled correctly
3) Call Samantha

|

Apply I 0K | Delete I Cancel I

FIG. 20c

U.S. Patent Sep. 19, 2006 Sheet 40 of 42 US 7,110,936 B2

%_ Document View Engine: Level I Design (class structure)
146 144 144a
/ \ N
CodeDocument N AToken ’—> KeywordToken DataToken
0:n -
! » NewlineToken ProcToken
Page
“~144b
0:n »QuoteStringToken 144c
| {0:n
Staternent <——| 01

. » MacroToken |—~—144d
] parent
children

CommentToken |__— 144e

FIG. 21

US 7,110,936 B2

Sheet 41 of 42

Sep. 19, 2006

U.S. Patent

¢¢ 9Old

| 9AL] d0id
2] eieqg

au() 201

/

agegpi¢

o8eqpug

(3poD Q)
JUWNO0(]

a3ed 18 |

*[SPOW Y} U SIUIUILIS
PAPPAqILS SMO[[B JUSWAEIS
ay jo diysuone|a1 30uarYas
~\ J19s a3 Jo souanbasuo))

\

ovi

U.S. Patent Sep. 19, 2006 Sheet 42 of 42

US 7,110,936 B2

@ complement$S oft ASAP Version 2.0
I File Edit Search Options Help

|l B IG&RN|w - ¥ BBIMNGEIS

ml»xle

Document
Manager

Editor

Visualizer

Database
Manager

g

Site
Manager

Code |

@ LIBNAME smpl 'd:\data\complementsoft)library' :

2

@ Data smpl.smpl 1;

4 infile 'd;\deta\complementsoft\data\smpl 1l.txt' :|
5 input strcoll § strcol2 % nbreol:;
é

@ Proc SORT out = smpl.smpl 1:
8 by strcoll:

9 —— -

© " pata NULL_: 1 1 2

11 set smpl.smpl_1;

12 file 'd:\data\complementsoftidatalsmpl_2.txt':
13 put strcoll strcol2;

14

@ Data sopl.smpl_2;

16 infile 'd:\daca\complementsoftidata\smpl 2.txtT'g
17 inpuc strcoll § strcol2 g;

lBN

@ Proc SORT out = smpl.smpl_2; 1 1 2

20 by strcoll:

21

22 Data ConCat;

23 set smpl.smpl 1 smpl.sapl_2:

24 file ‘'d:\data\complementsoftidataismpl_3.txtT';
25 put strcoll strcol2 nbreol:

26

27 DPata SideSige;

28 merge smpl.smpl 1 smpl.smpl 2;

29 by strcoll;

30 file 'd:\data\complementsoftidata\smpl_4.txu':
31 PUt Strcoll nbrcol:

32

@ Proc Print;

34 Title 'Two Sample SAS Data Sets Side by Side':
35 Run;

DADATAcomplementSofiExamples\Example 5.5as | DIBATAcomplementSoMExamples\Example 5.sas

82b

File(s)

82"

FIG. 23

US 7,110,936 B2

1

SYSTEM AND METHOD FOR GENERATING
AND MAINTAINING SOFTWARE CODE

RELATED APPLICATION

This subject application claims the benefit of U.S. Pro-
visional Application Ser. Nos. 60/270,950, entitled “GUI
SAS CODE Development and Maintenance Environment
Software,” filed on Feb. 23, 2001 and 60/293,854, entitled
“Integrated Development Environment and GUI for Data
Management Systems,” filed on May 25, 2001.

BACKGROUND OF THE INVENTION

This invention relates generally to software maintenance
and development tools and, more particularly, to an exten-
sible, language independent software development tool hav-
ing a graphical user interface, i.e., a GUI Integrated Devel-
opment Environment.

The evolution of data manipulation and data management
systems, such as SAS®, SPSS® and SQL®, and relational
database management systems, such as IBM® DB2 UDB®
and the Oracle® RDBMS, has resulted in several high-level
software languages that are inconsistent and, in some cases,
unstructured. Based on these inconsistencies and the
unstructured nature of some of these languages, database
management languages may be difficult to use, edit and
debug. Moreover, because of the lack of a standardized
syntax among these programming languages, it has been
difficult for users of these languages to share code. This is
particularly the case with SAS®.

Since the advent of personal computers and the GUI
Interfaces such as Windows® Interfaces, it has become
increasingly necessary for businesses to develop or purchase
customized software in order to support specific business
strategies or processes. This, in turn, has led to the imple-
mentation of a variety of software development tools and
Integrated Development Environments (“IDEs”). Generally,
these software development tools assist users and program-
mers in editing, debugging and developing software for
specific programming languages. Software providers of data
manipulation languages or systems have, however, failed to
provide a single comprehensive software development tool
capable of assisting users in the editing, visualizing, debug-
ging and development of software. Furthermore, the creation
of graphical development tools for particular programming
languages, such as, SAS®, has been inhibited by the intri-
cacies of the programming language itself.

Over the years, point solutions have been introduced to
address specific issues. For example, there are a few GUI
based ftp software packages to make the job of transferring
and managing code easier. There are also a few GUI based
editor software packages to make editing code easier. Still
further, there are software packages that one can use to
manually diagram program flow and data flow. What is
lacking, however, is a software package that integrates these
best of breed point solutions and integrates them in such a
way that they work seamlessly with each other, e.g., to have
an editor that is integrated with a ftp package so that the
editor can edit files that are located in a remote server or to
have the editor integrated with the diagramming package so
the user does not have to manually generate and update
program flow or data flow diagrams.

Thus, a need exists for an Integrated Development Envi-
ronment for generating and maintaining software code, in
particular, for data manipulation centric languages. More
specifically, a need exists for a system and method for

20

25

30

35

40

45

50

55

60

65

2
exchanging, editing, debugging, visualizing and developing
SAS®, SPSS®, SQL®, DB2 UDB®, Oracle® RDBMS and
other relational database management system software.

SUMMARY OF THE INVENTION

In accordance with these needs, the present invention is
embodied in an Integrated Development Environment for
generating and maintaining source code (software pro-
grammed in a software language), in particular, programmed
in data manipulation languages. Generally, the system in
which the Integrated Development Environment resides
includes a local computer capable of exchanging files with
a remote computer via a network system, i.e., a Local Area
Network, a Wide Area Network, or the Internet. The local
computer preferably hosts the Integrated Developers Envi-
ronment which is further comprised of a document manager
for transferring files and otherwise providing enhanced file
management functions, such as, version synchronization
across multiple platforms. The document manager works in
connection with a server module, a site manager and a
connectivity layer which is part of the Integrated Develop-
ment Environment to connect to remote computers, to
transparently exchange files with the remote computer and
to manage server profiles and connection information that is
related to remote computers and transferred files.

Once a file is transferred to the local computer, an editor,
which is included as part of and integrated with the Inte-
grated Development Environment, can modify the code
associated with the file. In addition, the editor is also capable
of creating new files and provides many advanced editing
features such as visual execution break points, standardized
formatting of files, and line numbering to name a few. A
visualizer, i.e., a software tools that reads the code and
generates diagrams and graphical representation of the pro-
gram flow, data flow or the logic of the code, is also
integrated and included as part of the Integrated Develop-
ment Environment. Program flow diagrams are comprised of
program block icons and arrows to depict the code’s pro-
gram flow. Data flow diagrams are comprised of icons
depicting data processing steps and arrows to depict the flow
of the data through the program. Preferably, the visualizer
and editor are integrated so that changes made to the code in
the editor are immediately reflected in the visualizer and
vice-versa. The visualizer can also read information from
execution logs and execution outputs to display the execu-
tion path for selected code and automatically display insight-
ful debugging and optimization information for the selected
code to the user.

To assist in developing new code or editing existing code,
the Integrated Development Environment further includes a
template manager that allows the user to browse through a
repository of existing code or templates and to copy tem-
plates into the selected code for editing.

For allowing the editor to process code that is written in
different Data Manipulation System programming lan-
guages and for creating the program flow icons, the Inte-
grated Development Environment additionally includes a
parser layer. The parser layer detects the type of code in the
selected file and activates the rules and logic that apply to the
corresponding Data Manipulation System programming lan-
guage.

As will become apparent from the detailed description
that follows, the subject Integrated Development Environ-
ment provides, among others, the following unique func-
tions: seamlessly exchanging with and executing files on
local and remote computers, where the site manager is

US 7,110,936 B2

3

capable of compiling connection information for remote
computers necessary to achieve the seamless transfer and
execution of files; automatically generating program flow
and data flow diagrams, where the program flow and data
flow diagrams can be viewed at various levels of abstraction
and where the user is capable of utilizing a step-wise
function to collapse or expand the levels of abstraction to
view; and automatically parsing the execution log to auto-
matically match errors and warnings in the log file to the
appropriate corresponding lines of code in the program file
in order to ease the ability to correct the error, to visually
highlight problematic areas, and to generate user customi-
zable error messages and debugging advice for such prob-
lematic areas.

A better understanding of these and other objects, advan-
tages, features, properties and relationships of the invention
will be obtained from the following detailed description and
accompanying drawings which set forth an illustrative
embodiment and which are indicative of the various ways in
which the principles of the invention may be employed.

BRIEF DESCRIPTION OF DRAWINGS

For a better understanding of the invention, reference may
be had to a preferred embodiment shown in the following
drawings in which:

FIG. 1 is a diagram illustrating an exemplary computer
network for generating, maintaining and executing computer
code;

FIG. 2 is a diagram illustrating exemplary components of
the local computer;

FIG. 3 is an exemplary screen shot depicting a graphical
user interface displaying a Menu bar, a Tool bar, a Display
area (in this case the Editor) and a Navigation bar;

FIG. 4a—f are exemplary screen shots and corresponding
tables depicting icons that are representative of menu items
included on the Menu bar, along with the name of each menu
item and a functional description of pertinent menu items;

FIG. 5 is a diagram illustrating the tool bar and a
corresponding table describing the pertinent functions asso-
ciated with the buttons included on the Tool bar;

FIG. 6 is an exemplary screen shot depicting an Editor
window in Full Screen mode, along with corresponding
output and log file tabs;

FIG. 7 is an exemplary screen shot depicting a tree view,
along with the corresponding code segments;

FIG. 8 is an exemplary screen shot depicting a template
manager window with available templates;

FIG. 9 is an exemplary screen shot depicting a program
flow for a selected file, along with arrows that indicate the
flow of data within the program flow;

FIG. 10 is an exemplary screen shot depicting a server
module window configured for automated login and includ-
ing session tabs for Server A and Server B;

FIG. 11 is an exemplary screen shot depicting a site
manager window;

FIG. 12 is an exemplary screen shot depicting a document
manager window;

FIG. 13 is an exemplary screen shot depicting a search
panel for locating files;

FIG. 14a is an exemplary screen shot depicting an
Enhanced Editor Options window;

FIG. 145 is an exemplary screen shot depicting a Color
tab window for customizing the font colors associated with
the code displayed by the Editor;

FIG. 14c¢ is an exemplary screen shot depicting a General
tab window for configuring the usage of an external editor

20

25

30

35

40

45

50

55

60

65

4

in-lieu of the built-in editor, enabling and disabling line
numbering for the code displayed by the Editor, and select-
ing print options;

FIGS. 14d&e are exemplary screen shots depicting an
Execution Configuration tab for configuring the execution
mode and execution location for selected files;

FIG. 15 is an exemplary screen shot depicting the tem-
plate window as it is displaying available web-based tem-
plates to the user;

FIG. 16 is an exemplary screen shot of a web-based
template that is already configured;

FIG. 17 is an exemplary screen shot depicting a data flow
for a selected file;

FIG. 18a— are a series of exemplary screen shots depict-
ing operation of a step-wise function and various data flows
as the data flows are being collapsed;

FIG. 19 is an exemplary screen shot depicting the visu-
alizer employing the Split Screen view;

FIG. 20 is an exemplary screen shot depicting the visu-
alizer with a problematic code section and a corresponding
program flow icon being displayed in red;

FIG. 20a is an exemplary screen shot depicting the
visualizer with a problematic code section and a correspond-
ing error log for that code section;

FIG. 204 is an exemplary screen shot depicting a debug-
ging hint associated with a problematic code section;

FIG. 20c is an exemplary screen shot depicting an error
message and a corresponding debugging hint being provided
by the message manager;

FIG. 21 depicts a predefined class structure for recogniz-
ing and displaying tokens, which is employed by a file parser
to parse a selected file; and

FIG. 22 depicts an exemplary file that has been parsed and
the corresponding class structure of the parsed file.

FIG. 23 depicts an exemplary file with break points
added.

DETAILED DESCRIPTION

Turning now to the Figures, wherein like reference
numerals refer to like elements, there is illustrated an
Integrated Development Environment having numerous
cooperating modules which together provide a system and
method for generating and maintaining software, in particu-
lar, the software for data development and data manipulation
languages. Although not required, the system and method
will be described in the general context of a computer
network 20, illustrated in FIG. 1, and computer executable
instructions being executed by general purpose computing
devices within the computer network 20. In this regard, the
general purpose computing devices may comprise one or
more remote computers 22a, and one or more local com-
puters 224, hosting an integrated software application 30.
The computer network 20 can also include one or more
databases 24. It should be appreciated that the network
components could be described as having client and server
relationships, as generally known in the art.

To allow the local computers 225 to generate and maintain
code written in various programming languages, the inte-
grated software application 30 will reside on the local
computer 22b. Further, as shown in FIG. 2, it is preferable
that the integrated software application 30 execute on a Java
Virtual Machine (“JVM”) which acts as an interface
between the integrated software application and the operat-
ing system for the local computer 225. Although the oper-
ating system for the local computer 225 is preferably Win-
dows® based, it should be understood that the local

US 7,110,936 B2

5

computer 225 could employ any one of the currently exist-
ing operating systems, such as LINUX®, UNIX®, MAC
OS®, etc.

For editing, generating and maintaining software (i.e.,
program code), the local computers 225 include a graphical
user interface 40. As shown in FIG. 3, the graphical user
interface 40 is further comprised of a menu bar 42, a tool bar
44, a display area 46 and a navigation bar 48. FIGS. 4a—4e
shows exemplary drop-down menu items included on the
menu bar, along with a brief description of the functionality
associated with those options. FIG. 4f shows the “Right-
Click” menu. The tool bar 44 is further comprised of and
displays several buttons, including a template manager
button 44a, which serves as a link to a template manager
100. In addition, FIG. 5 shows exemplary buttons included
on the tool bar 44, along with a brief description of the
functionality associated with those buttons. The navigation
bar 48 is further comprised of and displays a document
manager button 48a, a site manager button 485, an editor
button 48c¢, a visualizer button 484, a database manager
button 48/, and a server button 48e, which serve as links to
modules corresponding with these respective buttons, i.e., a
document manager 60, a site manager 70, an editor 80, a
visualizer 120, a database manager 121, and a server module
160, each of which will be described in greater detail below.

As will be appreciated by those of skill in the art, the
computers 22a, 22b need not be limited to personal com-
puters, but may include hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, personal
digital assistants, cellular telephones or the like depending
upon their intended end use within the system. For perform-
ing the procedures described hereinafter, the computer
executable instructions may be written as routines, pro-
grams, objects, components, and/or data structures that
perform particular tasks. Within the computer network 20,
the computer executable instructions may reside on a single
computer 22a, 225 or the tasks performed by the computer
executable instructions may be distributed among a plurality
of'the computers 22a, 22b6. Therefore, while described in the
context of a computer network, it should also be understood
that the present invention may be embodied in a stand-alone,
general purpose computing device that need not be con-
nected to a network.

To perform the particular tasks in accordance with the
computer executable instructions, the computers 22a, 225
may include, as needed, a video adapter, a processing unit,
a system memory, and a system bus that couples the system
memory to the processing unit. The video adapter allows the
computers 22a, 225 to support a display, such as a cathode
ray tube (“CRT”), a liquid crystal display (“LCD”), a flat
screen monitor, a touch screen monitor or similar means for
displaying textual and graphical data to a user. The display
allows a user to view information, such as, code, file
directories, error logs, execution logs and graphical user
interface tools.

The computers 22a, 226 may further include read only
memory (ROM), a hard disk drive for reading from and
writing to a hard disk, a magnetic disk drive for reading from
and writing to a magnetic disk, and/or an optical disk drive
for reading from and writing to a removable optical disk.
The hard disk drive, magnetic disk drive, and optical disk
drive may be connected to the system bus by a hard disk
drive interface, a magnetic disk drive interface, and an
optical disk drive interface, respectively. The drives and
their associated computer-readable media provide a means
of non-volatile storage for the computer executable instruc-

20

25

30

35

40

45

50

55

60

65

6

tions and any other data structures, program modules, data-
bases, etc. utilized during the operation of the computers
22a, 22b.

To connect the computers 22a, 22b within the computer
network 20, the computers 22a, 225 may include a network
interface or adapter. When used in a wide area network, such
as the Internet, the computers 22a, 225 typically include a
modem or similar device. The modem, which may be
internal or external, is connected to the system bus via a
serial port interface. It will be appreciated that the described
network connections are exemplary and that other means of
establishing a communications link between the computers
22a, 22b may be used. For example, the system may also
include a wireless access interface that receives and trans-
mits information via a wireless communications medium,
such as a cellular communications network, a satellite com-
munications network, or another similar type of wireless
network. It should also be appreciated that the network
interface will be capable of employing TCP/IP, FTP, SFTP,
Telnet SSH, HTTP, SHTTP, RSH, REXEC, etc. and other
network connectivity protocols.

For seamlessly transferring files, the document manager
60 is utilized. The document manager 60 is a file manage-
ment program that performs many enhanced file manage-
ment functions, such as recognizing related files, (e.g.,
execution log files, output files, include files, etc.) and
managing related files as a unit, regardless of the location of
such files. For example, if the user causes the document
manager 60 to transfer a file from the remote computer 22a
to the local computer 225, the document manager 60 may
also determine whether any related files exist, i.e., files that
are or will be used in conjunction with the file that the user
is transferring, and transfer those files as well. As will be
described in further detail below, these enhanced file man-
agement functions, including managing related files and
storing information, such as origination and timestamp
information about these files, allow the user to exchange
files with and execute code on local computers 225 and/or
remote computers 22a. To accomplish the enhanced file
management functions, the document manager 60 may also
include an intelligent module 62, a security layer 66 and a
file transfer program 68.

The intelligent module 62 enables the document manager
60 to track pertinent file transfer information 64 that enable
the performance of enhanced file management functions,
including, uploading files from a source computer and
returning/downloading an edited version of the same file to
the same source computer for storage, execution, etc. To
accomplish the functions of returning edited files to the
source computer and executing edited files remotely, the file
transfer information 64 may include a source computer
identifier, a file directory identifier, a content identifier, a
timestamp or other information capable of allowing the
tracking of the type or path of files that are transferred
between computers 22a, 226 or within a single computer
22b.

To ensure that the integrity and security of the network 20
is maintained, a security layer 66 is utilized. The security
layer 66, which is part of the site manager 70, may save
server login information supplied by the site manager 70
thereby allowing subsequent file exchanges to be handled
transparently. The security layer 66 may also be capable of
configuring the integrated software application 30 to work
with firewalls. The site manager 70 gathers server login
information and similar information for use by the document
manager 60, the intelligent module 62 and the security layer
66, and interacts closely with each of these modules. Pref-

US 7,110,936 B2

7

erably, remote file access and file execution are handled
centrally through the site manager 70.

To maintain existing software and develop new software,
the editor 80 allows the user to perform standard text editing
functions, including, mouse placement of the cursor, click-
and-drag text selection and standard Windows® key com-
binations for cutting, copying and pasting data. While edit-
ing code that has been previously executed, the associated
log files and output files that are stored in the same directory
104 as the code will automatically be opened and each of
these files will include a corresponding tab 84a, 845, as
shown in FIG. 6. The user can access each of these files by
clicking on the corresponding tab 84a or 845 and switch
between several related files by clicking on different tabs.
The editor 80, the document manager 60 and the site
manager 70 cooperate to track the association between
edited code, the log files and output files that are generated
by the edited code, and the remote system on which edited
code may be executed. The editor 80 may also employ
language-specific syntax checking and auto-correct func-
tions to enhance the software development capability of the
integrated software application 30.

To make the code more manageable and allow the user to
see a more abstract version of the code, the editor 80 also
provides a means to invoke a tree view 90, which may be
displayed near the editor 80. The tree view 90 depicts
individual procedures and data blocks as active elements 82
and shows the code at a high level. Since each active element
82 is representative of a larger code segment, as shown in
FIG. 7, the user can navigate throughout the code by
selecting active elements 82 and thereby displaying the
larger code segment associated with the selected active
element 82 (i.e., the editor will automatically scroll to the
region where the code segment is visible). To make it easier
to cut, copy or move code segment, the user can right-click
on an active elements in the tree. This will cause the editor
to automatically scroll to the region where the code segment
is located and highlight the entire code segment. The user
can then cut or copy the highlighted code segment to the
clipboard.

For enabling users to add pre-existing lines of code or
templates 106 to a program being edited or created, the
editor 80 also includes the template manager 110, which
may be accessible to the user by clicking on the Template
button on the tool bar 44 menu. As shown in FIG. 8, the
template manager window 102 includes a directory 104 of
templates 106, which are both pre-built and written by the
user and which may be examined by navigating the directory
104 in a manner that is well-known in the art. The template
manager 110 allows the user to insert templates 106 directly
into the code that is being created/edited. In addition, the
template manager 110 also allows the user to create and
organize their own templates 106. Still further, the template
manager 110 could be used in connection with the Internet
and a web browser to view and retrieve templates stored at
remote locations, such as web sites, bulletin boards, etc. The
Template Manager 100 can store the templates (both built-in
and those developed by the user) locally and/or centrally on
a remote server making it easy for the entire workgroup or
enterprise to share these templates.

In addition, the editor 80 may also provide an auto-
complete function capable of automatically generating code
based on templates 106 managed by the template manager
100. For example, as soon as a user keys in a recognized key
word, the editor 80 will automatically perform a look-up
function for that keyword in the directory 104. If a template
106 includes a matching keyword, then the editor 80 may

20

25

30

35

40

45

50

55

60

65

8

automatically paste the template into the display area. If
more than one template 106 matches the keyword, then a
pop-up window will be displayed presenting the user with
the option of selecting one of the matching templates. It
should also be appreciated that the user customize the
integrated software application 30 by enabling or disabling
the auto-complete feature.

For viewing the program flow and data flow of a selected
program, as will be further described below, the visualizer
120, in connection with a parser layer 140, reads, parses and
displays the code for the selected program, representing each
program and data block with a program flow icon 126. As
illustrated in FIG. 9, arrows connect these program flow
icons 126 to generally illustrate the flow of data.

Assuming that the designated code segment has been
executed previously and that the execution log is readily
available, the user may also “mouse-over” the program flow
icon to display the comments and execution statistics, i.e.,
CPU usage, number of row processed, etc., associated with
the block. Right-clicking on the program flow icon will
activate specific functions or options associated with the
icon. For example, the dataset icon (i.e., an icon that
represents a dataset or a table) will display a list of data
inspection or data discovery functions, including ad hoc
SQL® queries. Ad hoc SQL® queries that are selected may
be executed by the respective engine. These engines (e.g.,
SAS, DB2 UDB, or other RDBMS servers) can resides
locally on the user’s workstation or remotely on the LAN/
WAN and the results, once retrieved will be displayed in a
pop-up output window.

To access and interact with remote computers 22a via
command lines, the server module 160 acts as a robust
terminal emulator. The server module 160 allows users to
open one or more sessions thereby simultaneously gaining
access to one or more hosts/remote computers 22a. In
addition, the user has the option of executing edited code on
a remote computer 22a, by employing the server module
160, in connection with the site manager 70, to connect the
local computer 225 to the remote computer 22a, as will be
described in more detail below. Once a session is opened, a
terminal tab for the respective session can be created and
displayed to the user by the server module 160, as illustrated
in FIG. 10. It should be understood by those with skill in the
art that the server module 160, the site manager 70 and the
document manager 60 all preferably interact with one
another to effectuate the transfer of code between the remote
server computers 22a and the local computer 225. It should
also be understood that each of these modules could be
combined or further divided to form one single module or
additional modules.

The site manager 70 assists the local computer 225 with
access to the remote computers 22a. For example, the
document manager 60 and the server module 160 use the site
manager 70 to collect the connection information 78 nec-
essary for the local computer 226 to make a LAN/WAN
connection to a remote computer 22a using either FTP,
SFTP, Telnet SSH, HTTP, SHTTP, RSH, REXEC and other
TCP/IP connectivity protocols. Additionally, to avoid manu-
ally entering the connection information 78 each time a
different remote computer 22« is accessed, the site manager
70 is also capable of saving connection information 78 for
different servers. Thus, the site manager 70 creates a virtual
computing environment by expanding the computing
boundary of the local computer 225 to include remote
computers 22¢ and making various computing resources
across the LAN/WAN seamlessly available for use by the
local computer 225. As shown in FIG. 11, the site manager

US 7,110,936 B2

9

window 72 may be divided into a first panel 74 and a second
panel 76. The first panel 74 displays a tree structure that
depicts the system configuration 74a for each of the remote
computers 22q that are available to the local computer 225.
The second panel 76 displays the connection information 78
for a selected remote computer 22a, including but not
limited to the following fields: Profile Name 78a, Host
Address 78b, User 78¢, Password 784, FTP port 78¢ and
Telnet Port 781

The site manager 70 also includes a PASV mode and
Firewall option which can be selected by the user. PASV
mode is supported as an option to allow file transfer pro-
grams (“FTPs”) to work with a firewall. This feature
reverses the connection between the remote computer 22a
and the local computer 225 allowing many users whose
sessions are hosted behind firewalls to use the document
manager 60. Therefore, PASV mode is useful for certain
types of firewalls that do not allow FTP servers to initiate
data connections back to the connected client. If the Firewall
option is selected, the firewall configuration parameters
from the Firewall tab of the Option Dialog will be used to
initiate a connection to this profile. Moreover, if the local
computer 225 resides behind a firewall that limits or restricts
FTP access and the Firewall mode is selected, the necessary
connection information 78 and Firewall selections for the
local computer 225 must be entered, i.e., a host name, port
number, user ID and password. In accordance with proce-
dures that are generally known in the art, the Firewall Type
box permits the user to select the command required by the
firewall to initiate an FTP session from the site manager 70.
In addition to providing options that enhance the network
connectivity of the local computer 225, the Option button
also provides tools and wizards for automatically searching
the LAN/WAN for designated resources. These tools and
wizards simplify the network/server connection setup
between the local computer 226 and the remote computers
22a.

For parsing the code, the parser layer 140 is provided. The
file parser 142 retrieves code utilizing the services provided
by the document manager 60 and examines the words/tokens
which comprise the code 144. The file parser 142 also
identifies and tags the tokens 144 to indicate that they are
one of a variety of token classes, such as, a keyword token,
a newline token, a quotestring token, a macro token and a
comment token. Since the integrated software application 30
is language aware, the parser layer 140 may accommodate
varying language types. Thus, although the preferred
embodiment of the present invention is specifically designed
to include modules for parsing SASS® and SQL code, it
should be appreciated that the modules can be included for
parsing and interpreting other language types, such as,
SPSS®, DB2 UDB® Store Procedures, ORACLE®
PL/SQL, etc.

For managing and interacting with database files, a data-
base manager 220 may be provided which automatically
interacts with the local ODBC registry to display a list of
ODBC resources. In addition, the database manager 220
may automatically search the LAN/WAN for RDBMS serv-
ers and display the list of RDBMS servers that are found
locally or remotely. The database manager also allows the
user to select and drill down to a desired database and
automatically connect to the selected database, unless a
login screen is required to connect to the database. Once
connected to the selected database, the Database Manager
will display a list of tables which are stored and available in
the database. The user can then right-click on a particular
table to gather statistics or to retrieve sample data from those

20

25

30

35

40

45

50

55

60

65

10

tables. The user can also drill down on a particular table to
display the columns of the tables. Similarly, the user can
click on a particular table to gather statistics (e.g., frequency
counts, min max, distinct value, average, etc.) or to retrieve
sample data from those tables. The user can also drag and
drop tables onto a work area to graphically generate SQL®
statements to retrieve data from the database. Additional
data manipulation functions, e.g., pivot, crosstab, and tem-
plates will be available to help users inspect, transform,
import, export, map, format, transport and derive new data
based on existing data. The database manager 220 may also
include a meta data manager 222 to help the user document
the business or logical definition of the data, and the
technical or physical definition of the data. The meta data
manager 222 may also assist the user in tracking the lineage
of'the data, i.e., the source of the data, the changes to the data
that were made and the destination of the data.

To further exemplify the functionality of the integrated
software application 30, the following section will discuss
an exemplary software development session, along with the
modules used to effectuate the respective functions.

This hypothetical session commences with activation of
the integrate software application 30. Once the integrated
software application 30 is launched, the graphical user
interface 40 will be displayed and the user will have the
opportunity to open modules in the navigation bar 48 or
engage functions represented by buttons in the menu bar 42
or the tool bar 44. For determining to which computer the
user desires access, the user would begin by activating the
site manager 70, which causes the site manager window 72
to be displayed to the user. The site manager window 72
includes a first panel 74 and a second panel 76. As shown in
FIG. 11, the first panel 74 of the site manager window 72
displays the defined/available remote computers 22q for the
user’s selection. As discussed above, the second panel 76 of
the site manager window 72 displays a server profile for a
selected remote computer 22a, comprising connection infor-
mation 78, including, but not limited to, the following fields:
Profile Name 78a, Host Address 785, User, Password, FTP
port 78¢ and Telnet Port 78f. As will be appreciated, the site
manager can be configured to search the network for servers
or certain types of servers and display the found servers for
selection by the user.

The server profiles 170 may be populated by selecting a
folder icon 172 to use as a parent directory 174. Once a
parent directory 174 is opened, the user may click on the
New button 176 to create a new server profile 170. There-
fore, it should also be understood that the site manager 70
allows the user to create new server profiles 170 by entering
the necessary connection information 78. To edit an existing
server profile 170, the user must select a remote computer
224 and click the Edit button 178. After the Edit button 178
is selected, the cursor may be moved to the Profile Name 784
for editing or modification, or the user may click on the
Option button for Advance Network/Server Connectivity
Configuration Settings.

The text displayed in the Profile Name 784 field can be a
profile name 78a that was selected in the first panel 74 of the
site manager window 72 or text the user enters in creating a
profile for a remote computer 22a or host. The Host Address
78b field may contain an IP address or a resolvable DNS host
name of the FTP, SFTP, Telnet, SSH, REXEC, HTTP, or
SHTTP server for the respective host definition. The User
78¢ field may contain the login name that the user will enter
to access the remote server computer FTP account. If the
selected remote computer 22a accepts anonymous FTP
requests, “anonymous” may be entered in this field. The

US 7,110,936 B2

11

Password 784 field may contain a password 784 for the
remote server computer FTP account, unless an anonymous
login is used; then, the Password 784 field may remain
blank. The FTP port 78¢ field is set by default to 21, since
most server computers 22a accept FTP connection requests
on port 21, however, the FTP Port 78e field may be changed
as needed. The Telnet Port 78/ field is set by default to 23,
since most server computers 22a accept Telnet connection
requests on port 23, however, the Telnet Port 781 field may
also be changed as needed.

Once the user selects a remote computer 22a to access, the
connection information 78 for the selected remote computer
22a is returned by the site manager 70 and displayed to the
user. Then, the user is given the option of connecting to the
selected remote computer 22a by selecting the Connect
Telnet button. When the Connect Telnet button is selected,
the server module 160 is activated. To connect to the remote
computer 22a, the server module 160 utilizes the connec-
tivity layer 180. More specifically, as is known in the art, the
connectivity layer 180 utilizes the connection information
78 with TCP/IP and other similar networking protocols to
interconnect with the remote computer 22a. Once the server
module 160 has made an initial connection with the selected
remote computer 22a, a server module window 162 is
displayed to the user. The server module window 162
displays the name of the remote computer 22a to which the
user is trying to connect.

Prior to opening a session on a particular host, the user
may be required to login or the server module 160 may
automatically log the user on (depending on the settings that
the user has selected in the server profile 170, i.e., save login
and password). FIG. 10 shows a server module window 162
that is configured for automated login, with a home path
preset to the integrated software application’s SAS® direc-
tory. The combination of the site manager 70, the server
module 160 and the connectivity layer 170, enable the user
to seamlessly access SAS® documents, log files and output
files stored at the remote computer 22b.

Once the local computer 225 accesses a remote computer
22a using the combination of the site manager 70, the server
module 160 and the connectivity layer 170, the document
manager 60 will be activated automatically. Moreover, to
view the available files for a selected computer, the docu-
ment manager window 170 may be displayed to the user. As
shown in FIG. 12, the document manager window 170
includes a local panel 172 and a remote panel 174. Each of
these panels, 172, 174 displays the available files for the
respective computers 225, 22a as a file tree structure, as
shown in FIG. 12. The user may then select one or more of
the available files for editing or visualizing. In the preferred
embodiment of the present invention, files that are located in
the local panel 172 are resident on the local computer 226
and files that are located in the remote panel 174 are resident
on the remote computer 22a, but it should be appreciated
that such designations are for explanatory purposes only and
that other variations of network systems and computer
designations could be employed.

The document manager 60 also allows the local computer
22b to perform various Windows® commands, such as,
creating new files, renaming, deleting and opening existing
files, printing files, copying, cutting and pasting information
to the Windows® clipboard, and other standard commands
that are generally known in the art. In addition, the document
manager 60 provides a Search Option 69. As shown in FIG.
13, selecting the Search Option 69 opens the search option
window 69a and allows users to search any file system that
is accessible to the local workstation/local computer 225, in

20

25

30

35

40

45

50

55

60

65

12

accordance with generally known file searching techniques,
including by exact or partial file name, modification date or
date range, and content.

To open a file displayed in the local panel 172, the user
may double-click on the selected file, or highlight the
selected file and start the desired module (i.e., the editor 80
or the visualizer 120). If the user double-clicks on a file
located in the local panel 172, the editor 80 will automati-
cally open and display the file. To open and edit a file
displayed in the remote panel 174, it is preferable that the
user drag a selected file from the remote panel 174 of the
document manager 60 and drop the selected file in the local
panel 172 of the document manager 60. It should also be
understood by those with skill in the art that other methods
for opening and moving files may be employed.

To retrieve a file that is stored on a remote computer 22a,
the document manager 60 may utilize a file transfer program
64, in connection with the site manager 70 and the connec-
tivity layer 180. For example, as is known in the art, the
document manager 60 may send a request to the file transfer
program 64 to import the selected file from a particular
remote computer 22a. In response to this request, the file
transfer program 64 may communicate with the remote
computer 22a via the connectivity layer 180 and instruct the
remote computer 22a to send the selected file to the local
computer 22b. When the selected file is being transferred
from the remote computer 22a to the local computer 225, the
intelligent module 62 of the document manager 60 may
compile file transfer information 64, as noted above. It
should also be understood that, while it is preferred to have
the intelligent module 62 compile file transfer information
64, other similar modules may be equally capable of accom-
plishing the task of compiling file transfer information 64 for
the system 20.

Again, for exemplary purposes only, it is assumed that the
user has chosen to edit the code before visualizing it. As
mentioned above, to begin editing files, the user may either
double-click on the selected file, which automatically opens
the editor 80, or the user may highlight the selected file and
then open the editor 80. To open the editor 80, the user need
only double-click on the Editor button 48¢ located in the
navigation bar 48 of the graphical user interface 40, as
shown in FIG. 3.

As shown in FIG. 6, once the editor 80 begins the editing
process (the default setting is Full Screen mode), the con-
tents of a selected file are returned from the document
manager 60 and displayed to the user beside a navigation bar
48 bar. For editing the code and implementing advanced
code-handling capabilities, the editor 80 also includes fea-
tures, such as, language-aware syntax highlighting, warning
and error log file highlighting, automatic line numbering,
automatic completion of code segment based on program
templates, tree views of program blocks and code templates
106. By highlighting key code statements, the language-
aware syntax highlighting makes the code easier to read and
edit. In addition, by highlighting the code, based on infor-
mation contained within the warning and error log files,
errors in the code are more apparent and the code is easier
to trouble-shoot.

To allow the user to customize, edit and maintain error
messages and the corresponding debugging hints, the mes-
sage manager 88 is provided. More specifically, the message
manager 88 allows the user to create, update and delete error
messages. For example, the user can click on any error
message in the log and in response to this selection, the
message manager 88 may compare the selected error mes-
sage to an existing repository of error messages The reposi-

US 7,110,936 B2

13

tory of error messages can be stored locally and/or centrally
in a remote server accessible and sharable by the entire
workgroup or the entire enterprise. If the selected error
message matches one of the existing error messages, a
debugging window will pop-up. The debugging window
will display the original error message, along with any
corresponding debugging hints that are associated with the
original error message as provided by the message manager
88. If the selected error message does not match one of the
existing error messages, the message manager 88 may
automatically read the new message into the repository of
error messages. Additionally, the user may have the option
to associate debugging hints with the new error message.

To further add to the utility of the editor 80, the user can
open the Enhanced Editor Options window 84 by clicking
the Editor Configuration button 86 in the Options pull-down
menu. The Enhanced Editor Options window 84 is further
comprised of a General tab 844, a Font tab 845, a Color tab
84¢ and an Execution tab 844d. As is generally understood in
the art and as shown in FIG. 14a, the font type, size and style
of the code may also be customized by the user by selecting
the Font tab 845 in the Enhanced Editor Option window 84.
Additionally, as shown in FIG. 145, the Color tab 84¢ of the
Enhanced Editor Options window 84 may be selected to
allow the user to select the colors that are used in connection
with various syntactically significant language elements in
the SAS® program file, thereby allowing the user to cus-
tomize the language-aware syntax highlighting and warning
and error log file highlighting functions. To further configure
the user workspace, the editor 80 allows the user to choose
whether or not to display line numbers in connection with
editing the code. For example, as shown in FIG. 14c¢, the
General tab 84a can be selected by the user and may provide
options for selecting a line numbering button representative
of disabling or enabling the line numbering, specifying
printing options or indicating the use of alternate editor. For
allowing the integrated software application 30 to configure
the execution path for selected files, the Execution tab 844
can be selected by the user and the execution mode and
execution location may be defined (i.e., Locally or
Remotely), as illustrated in FIGS. 14d&e. By configuring
the execution path for selected files, the user can execute the
code on local or remote computers 226, 22a or engines.

Once the selected code is displayed on the editor window
82, the user can begin to edit the code. Although the default
setting for the editor window 82 is the Full Screen mode, the
user can also select a Split Screen mode. The Split Screen
mode splits the editor window 82 into two panels, i.e., the
tree view panel 82¢ and the code view panel 82b. To
enhance the ability of the user to navigate within the body
of the code, the tree view panel 82a displays the tree view
90, which is comprised of a group of active elements 92. The
tree view panel 82qa displays a high-level representation of
the code and the code view panel 824 displays the corre-
sponding code that is associated with a highlighted active
element 92. To this end, the editor 80 works in connection
with the parser layer 140 to parse the code in a manner that
allows the editor 80 to display a tree view 90 comprised of
active elements 92 that are representative of code section
that perform important functions, such as, the introduction
of new variables or the execution of append, print or similar
functions. Thus, the user can navigate through the code by
clicking on the desired active element 92, which causes the
code that corresponds with that active element to be dis-
played in the code view panel 825.

The user can also add pre-existing code to the program
being edited, by opening the template manager 100. The

20

25

30

35

40

45

50

55

60

65

14

template manager 100 allows the user to select existing
templates 106 and to integrate the code associated with those
templates 106 into the code by simply clicking on the paste
button or by utilizing standard cut and paste tools, or similar
functions, as will be explained in greater detail below.

Once the template button 44a is selected, the template
manager 100 is activated and the template manager window
101 is opened. It should be appreciated that the template
manager 100 may be a separate browser; therefore, the
template manager window 101 may remain open throughout
the users session. The template manager window 101 may
be further comprised of a template directory panel 101a and
a template code panel 1015. The template directory panel
101a may display a directory 104 of template folders 105 or
available templates 106. To display the code associated with
an available template 106, the user may select a file folder
containing available templates 106 from the directory 104
and select an available template 106, which is located within
the selected file folder. Once a template 106 is selected, the
template code 106a associated with the template 106 is
returned to the template manager 100 and displayed in the
template code panel 1015.

To insert the template code 106a associated with a
selected template 106 directly into the code that is being
edited, the user may click the Copy button 102 on the
template manager window 101; this places the template code
106a associated with the selected template 106 into the
Windows® clipboard. Then, the user should place the cursor
in the desired location within the code and select the Paste
button 103. Or the user may simply click the paste button
and the template will be copied directly into the current
location of the cursor in the document.

The template manager 100 may also allow the user to
create new template folders 105 for storing templates 106, to
create new templates 106 and to edit existing templates 106.
These templates can reside on either the local drive or the
network drive. In addition, for allowing the template man-
ager 100 to import additional templates 106 from remote
computers 22a, the template manager 100 also enables the
user to browse web-based templates 108. As shown in FIG.
15, once the web-based templates 108 are accessed and
displayed on the template manager window 101, the web-
based templates 108 may be utilized in a manner similar to
the templates 106. As shown in FIG. 16, additional web-
based templates 108 may be added to the template manager
100 by the user. It should also be understood that the
templates 106 are web enabled, i.e., the user can associate
links or URLs with the template during creation. Thus, users
may be capable of clicking on a link and causing the
template manager 100 to automatically activate a web
browser to display any content associated with the link.

Once the user has completed the editing or development
of the code, the user can execute and debug the code. In
addition, the code can be executed locally or remotely. As is
known in the art, the user may also use the editor 80 to set
break points 112 in the code. As shown in FIG. 23, break
points 112 can be set by selecting the line numbers that
correspond to the intended location of the break points 112.
It should also be appreciated that by setting break points 112
in the code, the code can be executed in its entirety or as a
block of code with the additional option of skipping speci-
fied code segments within the selected blocks.

The site manager 70, the document manager 60 and the
editor 80 work in conjunction with one another to execute
the code. For example, the site manager 70 manages the
connections between the local computer 225 and the remote
host/remote computer 224; the document manager 60 tracks

US 7,110,936 B2

15

the associations between the code, the log files and the
output files that are generated and the remote system on
which the code is to be executed; and the editor 80 allows
the user to modify the code. Moreover, for assisting users in
developing and maintaining software, the editor 80 and the
visualizer 120 have an integrated relationship. For example,
each of the active elements 92 displayed in the tree view 90
may also be represented in the visualizer 120 and any
changes made in the editor 80 can be simultaneously
reflected in the visualizer 120.

To execute code remotely when the code resides on a
remote computer 22a, the code is first copied to a directory
on the local computer 225. Next, the user should open the
local copy of the code. After the local copy is opened and
returned to the editor 80, the code view panel 826 will
display the code. The user can also use the document
property wizard to specify the server and the location in
which they intend to execute the code. The server or location
may be selected by browsing the server list in the site
manager 70.

To execute code remotely when the code resides on a local
workstation/local computer 225, the user first instructs the
site manager 70 to make a connection to the remote com-
puter 22a. Then, the user may cause the document manager
60 to copy the code from the local computer 225 to a
directory 104 on the remote computer 22a. To select code for
execution, the user can drag an icon representing the
selected code from the local panel 172 of the document
manager 60 window and drop the icon in the remote panel
174 of the document manager 60 window. It should also be
appreciated that the selected code could be copied by other
means that are generally known in the art. Next, the user
should open the local copy of the code. After the local copy
is opened, the editor window 82 will display the code.

To execute the code or code segments, the user selects the
Execute Program button 44a on the tool bar 44 or in the
Right-Click menu. Once the Execute Program button 44aq is
selected, the server module 160 connects to the proper
computer 22a, 22b using the connectivity layer 180 and
causes the execution script, which may be defined in the site
manager 70, to operate on the selected code. After execution
of the code is complete, a system prompt will be displayed.
The user may then type “exit” to return to the editor 80
window; the document manager 60 automatically transfers
the session’s log an .1st files to the same directory 104 from
which the code was copied and displays them as separate
tabs on the Editor 80 window. The user can also configure
the remote execution function to that it will exit automati-
cally.

As shown in FIGS. 9 and 17, the visualizer 120 may be
used to show the program flow 122 or the data flow 124 of
the selected code on the visualizer window 121. Addition-
ally, the user will be able to toggle between the program flow
display 122a and the data flow display 124a by selecting the
View Program Flow button 1225 or View Data Flow button
124b, respectively. As shown in FIG. 9, the program flow
122 is displayed as a default and displays program flow
icons 126, which are graphical representations of code
sections, in the order that they occur in the code.

For generating the program flow icons 126, a document
view engine 200 is provided. The document view engine 200
operates in conjunction with the parser layer 140 to parse the
code. Using information provided by the parser layer 140,
the document view engine can intelligently recognize and
arrange individual procedures and data blocks on the visu-
alizer window 121 and represent the procedures and data
blocks as program flow icons 126. The document view

20

25

30

35

40

45

50

55

60

65

16

engine 200 may also allow users to assign meaning and
attributes to tokens 144, which are identified by the parser
layer 140. By assigning meanings and attributes to tokens
144, the document view engine 200 allows the visualizer to
create program flows 122 and data flows 124.

As shown in FIG. 17, the visualizer 120 may also show
the data flow 124 of the subject code. The data flow 124 is
generated by parsing the code, tracing the flow of the data
through the code and displaying individual processes and
data blocks in separate columns with arrows that connect the
program flow icons 126 and indicate the direction of the data
flow. In addition, as shown in FIG. 18, the data flow
visualizer also allows the user to combine flows in a step-
wise manner, thereby following the flow of the data from
start to finish. As the user clicks the Step-wise button 121a
located on the visualizer window 121, shown in FIG. 17, the
visualizer 120 and the document view engine 200 may
re-generate the data flow 124a on the visualizer window 121
and collapse the number of program flow icons 126 that
comprise the data flow 124, ultimately showing the entire
lineage of the data (i.e., where the data came from, how the
data has been processed and where the data was stored).
Thus, the visualizer 120 enables the user to view a repre-
sentation of the flow of data during execution of selected
code one step or program statement at a time. It should also
be appreciated that the user may take a single data flow 124
and reverse the step-wise function, thereby expanding the
number of program flow icons 126 that comprise the data
flow 124 and showing the data flow 124 for individual
sections or blocks of code.

It should also be appreciated that the integrated software
application 30 allows changes to the code to be made
textually or visually, i.e., by using the editor 80 or the
visualizer 120, respectively. Editing, creating or developing
new code visually using the visualizer is achieved by reverse
engineering the exiting code or code templates, i.e., SAS®,
SQL®, SPSS®, DB2 UDB®, Oracle® RDBMS and
UNIX® Scripts, and displaying the code visually using
icons. As the user manipulate these icons visually, code will
be generated. Any changes to the code via the visual
interface can be forward engineered to assume a textual
format capable of being executed on the respective Data
Development and Data Management System. Therefore, the
integrated software application 30 is capable of producing a
textual file that is derived from a visual model and executing
the derived textual file.

As shown in FIG. 19, the visualizer window 121 may also
be configured to display a split view. When the visualizer
window 121 is in split view mode, the visualizer window
121 will be comprised of a flow panel 1215 and an visualizer
code panel 121¢. The flow panel 1215 will display either the
program flow 122 or the data flow 124, and the visualizer
code panel 121¢ will display the code for program flow icons
126, which are shown in the flow panel 1215. Moreover, by
clicking on an icon in the program flow window or data flow
window, the user can cause the editor 80 window 100 to
display the portion of the code that corresponds to the
program flow icon 126 that was selected. This is especially
helpful in debugging the code.

For example, as shown in FIG. 20, when elements appear
in red, this signifies that the highlighted element contains an
error in the underlying code. If the user selects the high-
lighted element, a pop-up window may be displayed to the
user depicting the code associated with the highlighted
element, along with the corresponding Error log, i.e., the
editor 80 will scroll to the corresponding section of code and
display the code to the user, while also displaying the Error

US 7,110,936 B2

17

log in close proximity to the code. It should be appreciated
by those with skill in the art that during the user session, the
user may freely navigate between the document manager 60,
the editor 80 and the visualizer 120, as needed, by selecting
the corresponding icon in the navigation bar 48.

It should also be understood that the user can visualize the
execution log. Visualizing the execution log will show the
exact path of the program flow 122 and data flow 124. The
program flow 122 and the data flow 124 will be exact
because they are based on the actual execution of the code.
This in turns provides additional debugging and optimiza-
tion information, such as, the code section that will get
executed, how much data is being processed, the execution
time for the code, the external files, library or macros that are
referenced by the code, the format for the fully instantiated
macro, etc.

For parsing the code, the document manager 60 first
determines the file type for a selected file, i.e. the SAS®,
SPSS®, SQL®, DB2 UDB®, OracleR RDBMS etc. After
the file type for a selected portion of code is determined, the
parser layer 140 deploys the corresponding file parser 142,
e.g., a file parser 142 that corresponds to, in this case, one
of a variety of data manipulation and/or data management
programming languages. By deploying the appropriate file
parser 142, the parser layer 140 also activates the respective
rules and logic that correspond to the detected programming
language. Therefore, users are capable of developing, edit-
ing and maintaining code that can be executed by more than
one data manipulation and/or data management program.

As mentioned earlier, the parser layer 140 is capable of
processing varying file types, as the integrated software
application 30 has been designed to be language aware. For
example, as mentioned above, the document manager 60
recognizes file types and the integrated software application
30 includes enhanced, standalone productivity tools, such
as, generic text editors, the Windows File Manager and File
Transfer programs 68. In addition, these productivity tools
are also designed to work seamlessly with the integrated
software application 30 by implementing XML protocols, as
is generally known in the art. Thus, although the preferred
embodiment of the present invention is designed to interact
with SAS® code, it should also be appreciated that the
system will also be capable of parsing and interpreting other
file types, such as, SPSS®, SQL®, DB2 UDB®, Oracle®
RDBMS, etc.

As is generally known in the art, after the file parser 142
retrieves code from the document manager 60, the file parser
142 breaks the code document 146 into individual words/
tokens 144. Based on the class of the individual tokens 144,
the file parser 142 identifies and tags the tokens 144. Tokens
144 can be tagged to indicate that they are one of a variety
of classes, such as, a keyword token 144a, a newline token
1445b, a quotestring token 144¢, a macro token 1444 and a
comment token 144e. By tagging the tokens 144, the parser
layer 140 enables the document view engine 200 to recog-
nize and display the program flow 122. As shown in FIG. 21,
the document view engine 200 employs a predefined class
structure for recognizing and displaying the tokens 144
provided by the file parser 142. An example of the class
structure as it might be implemented in a parsed document/
file is shown in FIG. 22.

While specific embodiments of the present invention have
been described in detail, it will be appreciated by those
skilled in the art that various modifications and alternatives
to those details could be developed in light of the overall
teachings of the disclosure. For example, the processes
described with respect to computer executable instructions

20

25

30

35

40

45

50

55

60

65

18

can be performed in hardware or software without departing
from the spirit of the invention. Furthermore, the order of all
steps disclosed in the figures and discussed above has been
provided for exemplary purposes only. Therefore, it should
be understood by those skilled in the art that these steps may
be rearranged and altered without departing from the spirit
of the present invention. In addition, it is to be understood
that all patents discussed in this document are to be incor-
porated herein by reference in their entirety. Moreover,
while the present invention may be described in terms of a
particular programming language, it should also be under-
stood that the present invention may be programmed in
various other software languages. Accordingly, the particu-
lar arrangement disclosed is meant to be illustrative only and
not limiting as to the scope of the invention which is to be
given the full breadth of the appended claims and any
equivalents thereof.

What is claimed is:

1. An integrated development environment, comprising:

a document manager for retrieving source code pro-
grammed using one of a plurality of types of data
manipulation languages;

an editor for displaying the retrieved source code and
providing a means for a user to edit the retrieved source
code;

a parser layer which detects the one of the plurality of
types of data manipulation languages in which the
retrieved source code is programmed and which acti-
vates rules and logic applicable to the detected one of
the plurality of types of data manipulation languages;
and

a visualizer dynamically linked to the editor for display-
ing graphical representations of flows within the
retrieved source code using the rules and logic appli-
cable to the detected one of the plurality of types of data
manipulation languages and activated by the parser,
wherein the editor, parser layer and visualizer cooper-
ate such that edits made to the source code using the
editor are automatically reflected in the graphical rep-
resentations of flows displayed by the visualizer and
edits made to the graphical representations of flows in
the visualizer are automatically reflected in the source
code displayed by the editor.

2. The integrated development environment as recited in
claim 1, wherein the graphical representations of flows
depict data flows.

3. The integrated development environment as recited in
claim 1, wherein the graphical representations of flows
depict program flows.

4. The integrated development environment as recited in
claim 1, wherein the graphical representations of data flows
are expandable and collapsible.

5. The integrated development environment as recited in
claim 1, wherein the document manager retrieves all files
related to the source code to be edited.

6. The integrated development environment as recited in
claim 1, wherein the document manager comprises a site
manager and a connectivity layer for retrieving source code
from one or more remote computers.

7. The integrated development environment as recited in
claim 6, wherein the document manager comprises a secu-
rity layer for managing secure connections with the one or
more remote computers.

8. The integrated development environment as recited in
claim 1, wherein the editor comprises a template manager
for allowing preprogrammed segment of source code to be
placed within the source code being edited.

US 7,110,936 B2

19

9. The integrated development environment as recited in
claim 8, wherein the template manager is adapted to auto-
matically correct segments of the source code.

10. The integrated development environment as recited in
claim 8, wherein the template manager is adapted to auto-
matically generate segments of the source code.

11. The integrated development environment as recited in
claim 1, further comprising a means for allowing the source
code to be executed both locally and remotely.

12. The integrated development environment as recited in
claim 11, wherein the parser layer further examines error log
files generated by the means for allowing the source code to
be executed to determine segments of the source code
determined to include errors.

13. The integrated development environment as recited in
claim 12, wherein the visualizer cooperates with the parser
layer to change the appearance of displayed flows as a

20

function of the source code segments determined to have
errors.

14. The integrated development environment as recited in
claim 12, wherein the editor cooperates with the parser layer
to change the appearance of portions of the displayed source
code as a function of the software segments determined to
have errors.

15. The integrated development environment as recited in
claim 12, further comprising a message manager cooperat-
ing with the parser layer for displaying debugging hints as
a function of the source code segments determined to have
errors.

16. The integrated development environment as recited in
claim 15, wherein the message manager allows a user to edit
and maintain debugging hints for a variety of different
errors.

