
CLAIMS

What is claimed is:

5 1. A compound of formula I:

wherein:

R₁ is adenine, guanine, cytosine, thymine, 3-deazaadenine, or uracil,
optionally substituted by 1, 2, or 3 U; wherein each U is independently halo,
hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy,
(C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, hydroxy(C₁-C₆)alkyl, (CH₂)₁₋₄P(=O)(OR_w)₂ aryl, aryl(C₁-C₆)alkyl, or NR_xR_y;

 R_2 and R_6 are each independently hydrogen, halo, hydroxy, (C₁-C₆)alkyl,

- 15 (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, azido, cyano, -N(R_z)C(=O)N(R_{aa})(R_{ab}),
 -N(R_z)C(=O)OR_{ac}, or NR_{ad}R_{ae}, provided that one of R₂ and R₆ is hydroxy halo, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, trifluoromethyl, cyano, or NR_{ad}R_{ae};
 R₃ is hydrogen, halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-
- C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy,
 trifluoromethyl, azido, cyano, -N(R_z)C(=O)N(R_{aa})(R_{ab}), -N(R_z)C(=O)OR_{ac}, or
 NR_{ad}R_{ae};

 R_4 is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, aryl(C₁-C₆)alkyl, or 2cyanoethyl;

25 R_5 is an amino acid, a peptide, or NR_a R_b;

 R_7 is hydrogen, halo, hydroxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkyloxy, (C_1-C_6) alkanoyl, (C_1-C_6) alkanoyloxy, trifluoromethyl, azido, cyano, $-N(R_z)C(=O)N(R_{aa})(R_{ab})$, $-N(R_z)C(=O)OR_{ac}$, or $NR_{ad}R_{ae}$;

5

X is oxy, thio, or methylene;

each R_a and R_b is independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or aryl(C₁-C₆)alkyl; or R_a and R_b together with the nitrogen to which they are attached form a pyrrolidino, piperidino or morpholino;

each R_w is independently hydrogen or (C₁-C₆)alkyl;

 R_x and R_y are each independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, phenethyl, or (C₁-C₆)alkanoyl; or R_x and R_y together with the nitrogen to which they are attached are pyrrolidino, piperidino or morpholino;

 R_z is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

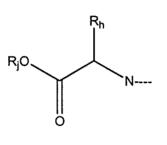
15

10

 R_{aa} and R_{ab} are each independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl; or R_{aa} and R_{ab} together with the nitrogen to which they are attached are pyrrolidino, piperidino or morpholino;

 R_{ac} is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

20 R_{ad} is hydrogen (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;


 R_{ae} is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

wherein any (C₁-C₆)alkyl of R₁-R₇, R_a, R_b, R_w, R_x, R_y, R_z, R_{aa}, R_{ab}, R_{ac}, R_{ad},
and R_{ac} is optionally substituted with one or more (e.g. 1, 2, 3, or 4) halo, hydroxy,
(C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy,
trifluoromethyl, azido, cyano, oxo (=O), (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, or heteroaryl, aryl(C₁-C₆)alkyl, or NR_{ai}R_{ak}; wherein each R_{ai} and R_{ak} is

30 independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl; and wherein any aryl or heteroaryl may optionally be substituted with one or more substituents selected from the group consisting of halo, hydroxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkyloxy, (C_1-C_6) alkanoyl, (C_1-C_6) alkanoyl, trifluoromethyl, trifluoromethoxy, nitro, cyano, and amino;

or a pharmaceutically acceptable salt thereof;

provided that R_2 and R_3 are each not hydroxy when R_1 is adenine, guanine, cytosine, thymine, or uracil, X is oxy, R_6 is hydrogen, and R_7 is hydrogen; and; provided R_1 is not 3-deazaadenine, when R_2 is hydroxy; R_3 is hydroxy; R_4 is hydrogen; R_5 a nitrogen linked radical of formula III;

III

wherein R_h is benzyl or 3-indolylmethyl; and R_j is methyl; x is oxy, R_6 is hydrogen, and R_7 is hydrogen.

15

5

10

2. The compound of claim 1 wherein R_1 is guanine, cytosine, thymine, 3deazaadenine, or uracil, optionally substituted by 1, 2, or 3 U; wherein each U is independently halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl,

20 hydroxy(C₁-C₆)alkyl, -(CH₂)₁₋₄P(=O)(OR_w)₂ aryl, aryl(C₁-C₆)alkyl, or NR_xR_y.

3. The compound of claim 1 wherein R_1 is adenine, cytosine, thymine, 3deazaadenine, or uracil, optionally substituted by 1, 2, or 3 U; wherein each U is independently halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-

25 C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, hydroxy(C₁-C₆)alkyl, -(CH₂)₁₋₄P(=O)(OR_w)₂ aryl, aryl(C₁-C₆)alkyl, or NR_xR_y. 4. The compound of claim 1 wherein R_1 is adenine, guanine, cytosine, thymine, or uracil, optionally substituted by 1, 2, or 3 U; wherein each U is independently halo, hydroxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkyloxy, (C_1-C_6) alkanoyl, (C_1-C_6) alkanoyl, trifluoromethyl,

5 hydroxy(C₁-C₆)alkyl, -(CH₂)₁₋₄P(=O)(OR_w)₂ aryl, aryl(C₁-C₆)alkyl, or _{NrxRy}.

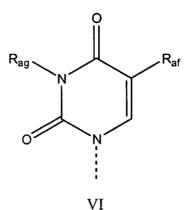
5. The compound of claim 1 wherein R_1 is cytosine, thymine, 3-deazaadenine, or uracil, optionally substituted by 1, 2, or 3 U; wherein each U is independently halo, hydroxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6)

10 C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, hydroxy(C₁-C₆)alkyl, -(CH₂)₁₋₄P(=O)(OR_w)₂ aryl, aryl(C₁-C₆)alkyl, or $_{NrxRy}$.

6. The compound of claim 1 wherein R_1 is 3-deazaadenine optionally substituted by 1, 2, or 3 U; wherein each U is independently halo, hydroxy, (C_1 -

C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl,
 (C₁-C₆)alkanoyloxy, trifluoromethyl, hydroxy(C₁-C₆)alkyl, -(CH₂)₁₋₄P(=O)(OR_w)₂
 aryl, aryl(C₁-C₆)alkyl, or _{NrxRy}.

7. The compound of claim 1 wherein R₁ is adenine, guanine, cytosine, thymine,
20 3-deazaadenine, or uracil,


8. The compound of claim 1 wherein R_1 is guanine, cytosine, thymine, 3deazaadenine, or uracil.

25 9. The compound of claim 1 wherein R_1 is cytosine, thymine, 3-deazaadenine, or uracil.

10. The compound of claim 1 wherein R_1 is cytosine, thymine, or uracil.

30 11. The compound of claim 1 wherein R₁ is a nitrogen linked radical of formulaVI:

22

wherein R_{af} is hydrogen, halo, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, or trifluoromethyl; and R_{ag} is hydrogen, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, trifluoromethyl, hydroxy (C_1-C_6) alkyl, or $-(CH_2)_{1-4}P(=O)(OR_w)_2$.

5

12. The compound of any one of claims 1-11 wherein R_2 is hydroxy.

13. The compound of any one of claims 1-11 wherein R_2 is halo.

10 14. The compound of any one of claims 1-11 wherein R_2 is fluoro.

15. The compound of any one of claims 1-11 wherein R_2 is chloro.

16. The compound of any one of claims 1-11 wherein R_2 is (C₁-C₆)alkoxy.

15

17. The compound of any one of claims 1-11 wherein R_2 is methoxy.

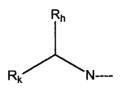
18. The compound of any one of claims 1-11 wherein R_2 trifluoromethyl.;

20 19. The compound of any one of claims 1-11 wherein R_2 is cyano.

20. The compound of any one of claims 1-11 wherein R_2 is amino, methylamino, dimethylamino, ethylamino, or dimethylamino.

25 21. The compound of any one of claims 1-20 wherein R_3 is hydroxy.

23


	22.	The compound of any one of claims 1-20 wherein R_3 is hydrogen.
5	23.	The compound of any one of claims 1-20 wherein R_3 is halo.
	24.	The compound of any one of claims 1-20 wherein R_3 is fluoro.
10	25.	The compound of any one of claims 1-20 wherein R_3 is chloro.
	26.	The compound of any one of claims 1-20 wherein R_3 is trifluoromethyl.
	27.	The compound of any one of claims 1-20 wherein R_3 is azido
15	28.	The compound of any one of claims 1-20 wherein R_3 is cyano.
	29. methy	The compound of any one of claims 1-20 wherein R_3 is amino, lamino, dimethylamino, ethylamino, or dimethylamino.
20	30.	The compound of any one of claims 1-29 wherein R_4 is hydrogen.
	31.	The compound of any one of claims 1-29 wherein R_4 is methyl or ethyl.
25	32.	The compound of any one of claims 1-29 wherein R_4 is 2-cyanoethyl.
	33.	The method of any one of claims 1-32 wherein R_5 is an amino acid.
	34.	The method of any one of claims 1-32 wherein R_5 is a peptide.
30	35. radica	The compound of any one of claims 1-32 wherein R_5 is a nitrogen linked l of formula II:

•

.

24

.

Π

wherein:

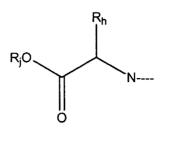
R_h is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl(C₁-C₆)alkyl, (C₁-C₆)alkyl-S-(C₁-C₆)alkyl-, aryl, heteroaryl, aryl(C₁-C₆)alkyl, or
heteroaryl(C₁-C₆)alkyl; wherein any aryl or heteroaryl may optionally be substituted with 1, 2, or 3 Z;
each Z is independently halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, trifluoromethoxy, nitro, cyano, or amino; and

10

 R_k is (C₁-C₅)alkyl is optionally substituted with one or more (e.g. 1, 2, 3, or 4) halo, hydroxy, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, azido, cyano, oxo (=O) or NR_{ad}R_{ae}.

36. The compound of claim 35 wherein R_h is hydrogen, (C₁-C₆)alkyl,

15 phenylmethyl, or 3-indolylmethyl.


37. The compound of claim 35 wherein R_h is phenylmethyl.

38. The compound of claim 35 wherein R_h is 3-indolylmethyl.

20

39. The compound of any one of claims 35-38 wherein the carbon bearing R_h has the (R) absolute configuration.

40. The compound of any one of claims 1-32 wherein R₅ is a nitrogen linked
radical of formula III:

wherein R_h is hydrogen, $(C_1-C_6)alkyl$, $(C_3-C_6)cycloalkyl$, $(C_3-C_6)cycloalkyl(C_1-C_6)alkyl$, $(C_1-C_6)alkyl-S-(C_1-C_6)alkyl-$, aryl, heteroaryl, aryl $(C_1-C_6)alkyl$, or heteroaryl $(C_1-C_6)alkyl$; wherein any aryl or heteroaryl may optionally be substituted

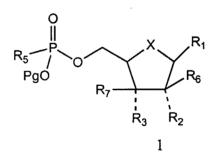
- with 1, 2, or 3 Z; R_j is hydrogen, (C₁-C₆)alkyl, phenyl, benzyl, or phenethyl; and wherein each Z is independently halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, trifluoromethoxy, nitro, cyano, or amino.
- 10 41. The compound of claim 40 wherein R_h is hydrogen, (C₁-C₆)alkyl, phenylmethyl, or 3-indolylmethyl.
 - 42. The compound of claim 40 wherein R_h is phenylmethyl.
- 15 43. The compound of claim 40 wherein R_h is 3-indolylmethyl.

44. The compound of any one of claims 40-43 wherein the carbon bearing R_h has the (R) absolute configuration.

20 45. The compound of any one of claims 1-44 wherein R_6 is hydrogen or (C₁-C₆)alkyl.

46. The compound of any one of claims 1-11 and 21-44 wherein R_2 is hydrogen or alkyl; and R_6 is halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy,

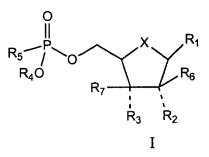
(C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, azido,
 cyano, -N(R_z)C(=O)N(R_{aa})(R_{ab}), -N(R_z)C(=O)OR_{ac}, or NR_{ad}R_{ae}.


47. The compound of any one of claims 1-46 wherein R_7 is hydrogen or (C₁-C₆)alkyl.

48. The compound of any one of claims 1-20 and 30-44 wherein R₃ is hydrogen
or alkyl; and R₇ is halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, azido, cyano, -N(R_z)C(=O)N(R_{aa})(R_{ab}), -N(R_z)C(=O)OR_{ac}, or NR_{ad}R_{ae};

49. The compound of claim 1 which is(2-(3-indolyl)-1(R)-

10 methylcarbamoylethyl)phosphoramidic acid mono (1-Barabinofuranosyladenosine)ester; or a pharmaceutically acceptable salt thereof.


50. A process for preparing a compound of formula I as described in claim 1, wherein R₄ is hydrogen, comprising deprotecting a corresponding compound of
 15 formula 1:

wherein Pg is a suitable removable protecting group.

20

51. A method for treating a viral infection in an animal comprising administering an animal in need of such treatment an effective amount of a compound of formula I:

wherein:

R₁ is adenine, guanine, cytosine, thymine, 3-deazaadenine, or uracil,
optionally substituted by 1, 2, or 3 U; wherein each U is independently halo,
hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy,
(C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, hydroxy(C₁-C₆)alkyl, (CH₂)₁₋₄P(=O)(OR_w)₂ aryl, aryl(C₁-C₆)alkyl, or NR_xR_y;

 R_2 and R_6 are each independently hydrogen, halo, hydroxy, (C₁-C₆)alkyl,

10 (C₃-C₆)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy, trifluoromethyl, azido, cyano, -N(R_z)C(=O)N(R_{aa})(R_{ab}),
-N(R_z)C(=O)OR_{ac}, or NR_{ad}R_{ae}, provided that one of R₂ and R₆ is hydroxy halo, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, trifluoromethyl, cyano, or NR_{ad}R_{ae};

R₃ is hydrogen, halo, hydroxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-

C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy,
 trifluoromethyl, azido, cyano, -N(R_z)C(=O)N(R_{aa})(R_{ab}), -N(R_z)C(=O)OR_{ac}, or
 NR_{ad}R_{ae};

 R_4 is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, aryl(C₁-C₆)alkyl, or 2cyanoethyl;

20

 R_5 is an amino acid, a peptide, or $NR_a R_b$;

 R_7 is hydrogen, halo, hydroxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkyloxy, (C_1-C_6) alkanoyl, (C_1-C_6) alkanoyloxy, trifluoromethyl, azido, cyano, $-N(R_z)C(=O)N(R_{aa})(R_{ab})$, $-N(R_z)C(=O)OR_{ac}$, or $NR_{ad}R_{ae}$;

25

X is oxy, thio, or methylene;

each R_a and R_b is independently hydrogen, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl,
aryl, or $aryl(C_1-C_6)alkyl$; or R_a and R_b together with the nitrogen to which they are
attached form a pyrrolidino, piperidino or morpholino;

each R_w is independently hydrogen or (C₁-C₆)alkyl;

 R_x and R_y are each independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, phenethyl, or (C₁-C₆)alkanoyl; or R_x and R_y together with the nitrogen to which they are attached are pyrrolidino, piperidino or morpholino;

 R_z is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

10

15

5

 R_{aa} and R_{ab} are each independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl; or R_{aa} and R_{ab} together with the nitrogen to which they are attached are pyrrolidino, piperidino or morpholino;

 R_{ac} is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

 R_{ad} is hydrogen (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

 R_{ae} is hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

wherein any (C₁-C₆)alkyl of R₁-R₇, R_a, R_b, R_w, R_x, R_y, R_z, R_{aa}, R_{ab}, R_{ac}, R_{ad},
and R_{ac} is optionally substituted with one or more (e.g. 1, 2, 3, or 4) halo, hydroxy,
(C₁-C₆)alkoxy, (C₃-C₆)cycloalkyloxy, (C₁-C₆)alkanoyl, (C₁-C₆)alkanoyloxy,
trifluoromethyl, azido, cyano, oxo (=O), (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)alkyl, or heteroaryl, aryl(C₁-C₆)alkyl, or NR_{aj}R_{ak}; wherein each R_{aj} and R_{ak} is

25 independently hydrogen, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, phenyl, benzyl, or phenethyl;

and wherein any aryl or heteroaryl may optionally be substituted with one or more substituents selected from the group consisting of halo, hydroxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkyloxy, (C_1-C_6) alkanoyl, (C_1-C_6) alkoxy, (C_1-C_6) alkoy), (C_1-C_6) alkoxy, (C_1-C_6) alko

C₆)alkanoyloxy, trifluoromethyl, trifluoromethoxy, nitro, cyano, and amino;or a pharmaceutically acceptable salt thereof;

provided that R_2 and R_3 are each not hydroxy when R_1 is adenine, guanine, cytosine, thymine, or uracil, X is oxy, R_6 is hydrogen, and R_7 is hydrogen.

52. A method for treating a viral infection in an animal comprising

administering an effective amount of a compound as described in any one of claims
 1-49 and 51 to an animal in need of such treatment.

53. A method for treating HCV in an animal comprising administering an effective amount of a compound as described in any one of claims 1-49 and 51 to an animal in need of such treatment.

54. A method for treating a metabolic liver disorder, in an animal comprising administering an effective amount of a compound as described in any one of claims 1-49 and 51 to an animal in need of such treatment.

15

55. A method for treating a cancer in the liver of an animal comprising
administering an effective amount of a compound as described in any one of claims
1-49 and 51 to an animal in need of such treatment.

- 20 56. A method for treating cancer in the brain of an animal comprising administering an effective amount of a compound as described in any one of claims 1-49 and 51 to an animal in need of such treatment.
- 57. A method for treating breast cancer, lung cancer or ovarian cancer in an
 animal comprising administering an effective amount of as described in any one of
 claims 1-49 and 51 to an animal in need of such treatment.

58. The use of a compound of formula I as described in any one of claims 1-49 and 51 to prepare a medicament for treating a viral infection in an animal.

30

30

59. The use of a compound of formula I as described in any one of claims 1-49 and 51 to prepare a medicament for treating HCV in an animal.

60. The use of a compound of formula I as described in any one of claims 1-49
5 and 51 to prepare a medicament for treating a metabolic liver disorder in an animal.

61. The use of a compound of formula I as described in any one of claims 1-49 and 51 to prepare a medicament for treating a cancer in the liver of an animal.

10 62. The use of a compound of formula I as described in any one of claims 1-49 and 51 to prepare a medicament for treating cancer in the brain of an animal.

63. The use of a compound of formula I as described in any one of claims 1-49 and 51 to prepare a medicament useful for treating breast cancer, lung cancer or
15 ovarian cancer in an animal.