

A022244


Gaussian binomial coefficients [ n,4 ] for q = 8.


1



1, 4681, 19477641, 79936505481, 327499862955657, 1341480367403783817, 5494724540479236953737, 22506402447071849965115017, 92186229916592298695053497993, 377594800550975709003441429239433, 1546628304496854696033468524851058313
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

4,2


REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of ErrorCorrecting Codes, ElsevierNorth Holland, 1978, p. 698.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 4..200


FORMULA

a(n) = Product_{i=1..4} (8^(ni+1)1)/(8^i1), by definition.  Vincenzo Librandi, Aug 05 2016


MATHEMATICA

Table[QBinomial[n, 4, 8], {n, 4, 20}] (* Vincenzo Librandi, Aug 05 2016 *)


PROG

(Sage) [gaussian_binomial(n, 4, 8) for n in range(4, 15)] # Zerinvary Lajos, May 27 2009
(MAGMA) r:=4; q:=8; [&*[(1q^(ni+1))/(1q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016


CROSSREFS

Sequence in context: A066731 A230487 A230483 * A252382 A190131 A226801
Adjacent sequences: A022241 A022242 A022243 * A022245 A022246 A022247


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Offset changed by Vincenzo Librandi, Aug 05 2016


STATUS

approved



